Formation of the quality of wheat grain by extremely low frequency electromagnetic field treatment

Authors

DOI:

https://doi.org/10.15587/2706-5448.2022.263484

Keywords:

wheat grain, electromagnetic field treatment, very low frequencies, germination, seed sprouts, statistical characteristics

Abstract

The object of the study is the treatment of wheat grain with an electromagnetic field (EMF) of extremely low frequencies (ELF), the subjects of the study are the quality indicators of wheat seed grain of the Shestopalivka variety 2019 and 2020 crops grown in the Odesa region. (Ukraine). Problematic issues in the treatment of wheat grain with ELF EMF are the rationale for the duration of treatment of grain and the frequencies of EMF that improves the quality of seeds.

The studies used methods of laboratory determination of seed quality indicators, calculation of statistical characteristics of the length of sprouts, and graphical methods for interpreting the results of studies.

The studies substantiated the modes of treatment wheat grain with ELF EMF, which improves the quality of seeds and reduces the energy intensity of treatment. The effect of the duration of grain treatment and the frequency of EMF on the germination and characteristics of the length of seed shoots was studied.

It has been established that, compared with untreated grain, the treatment of grain with an EMF with a frequency of 30 Hz, a magnetic induction of 10 mT for 6 minutes increases grain germination by 2–3 %, gives longer and 1.44–1.53 times more uniformly sprouted sprouts. Treatment within 60 min. reduces up to 9 % the germination of grain, the size of the shoots, increases their unevenness in length. The effect of seed germination activation by EMF treatment increases after 19 days of storage.

Treatment of wheat grain in 2019 with ELF EMF at a frequency of 15–17 Hz with a magnetic induction of 10 mT for 6 min. changes germination within ±3 % control. The germination of the treated grain of wheat in 2020 of the crop decreases relative to the control to 13 % (with the exception of the frequency of 16.5 Hz, at which it did not change).

Thus, the treatment of wheat grain with EMF makes it possible to influence the quality of seed grain. The results obtained encourage further research with a wider range of regime parameters and areas of wheat cultivation.

Author Biographies

Georgii Stankevych, Odesa National University of Technology

Doctor of Technical Sciences, Professor

Department of Grain and Feed Technology

Yurii Kovra, Foreign Enterprise «SGS UKRAINE»

Food Safety Laboratory (FSL) of Test Center

Alla Borta, Odesa National University of Technology

PhD, Associate Professor

Department of Grain and Feed Technology

References

  1. Kalinin, L. G., Boshkova, I. L. (2003). Fizicheskaia model otklika rastitelnoi tkani na vozdeistvie mikrovolnovogo elektromagnitnogo polia. Biofizika, 48 (1), 122–124.
  2. Kalinin, L. G., Boshkova, I. L., Panchenko, G. I., Kolomeichuk, S. G. (2005). Vliianie nizkochastotnogo i vysokochastotnogo elektromagnitnogo polia na semena. Biofizika, 50 (2), 361–366.
  3. Kozyrskii, V. V., Savchenko, V. V., Siniavskii, A. Iu. (2015). Predposevnaia obrabotka semian pshenitcy v magnitnom pole. Innovatcii v selskom khoziaistve, 2 (12), 36–39.
  4. Inozemcev, G. B. (2013). Impact of electromagnetic energy on the increasing yield capacity and growth stimulation of plants. Annals of Warsaw University of Life Sciences – SGGW Agriculture. Agricultural and Forest Engineering, 62, 31–35.
  5. Cherepnev, A. S., Cherepnev, Y. A., Liashenko, H. A. (2008). Yspolzovanye ympulsnoho elektromahnytnoho yzluchenyia dlia obezzarazhyvanyia zernovoi smesy. Zbirnyk naukovykh prats Kharkivskoho universytetu Povitrianykh Syl im. I. Kozheduba, 2 (17), 53–55.
  6. Chorna, M. O. (2017). The use of electromagnetic radiationfor drying and disinfectionof grain crops seeds. Visnyk Kharkivskoho natsionalnoho tekhnichnoho universytetu silskoho hospodarstva imeni Petra Vasylenka, 186, 146–147.
  7. Inozemtcev, G. B. (2016). Problemy i perspektivy prakticheskogo primeneniia elektromagnitnoi energii v protcessakh uskoreniia razvitiia rastitelnykh obektov. Innovatcii v selskom khoziaistve, 3, 13–17.
  8. Sarraf, M., Kataria, S., Taimourya, H., Santos, L. O., Menegatti, R. D., Jain, M. et. al. (2020). Magnetic Field (MF) Applications in Plants: An Overview. Plants, 9 (9), 1139. doi: http://doi.org/10.3390/plants9091139
  9. Ragha, L., Mishra, S., Ramachandran, V., Bhatia, M. S. (2011). Effects of Low-Power Microwave Fields on Seed Germination and Growth Rate. Journal of Electromagnetic Analysis and Applications, 3 (5), 165–171. doi: http://doi.org/10.4236/jemaa.2011.35027
  10. Rochalska, M., Orzeszko-Rywka, A. (2005). Magnetic field treatment improves seed performance. Seed Science and Technology, 33 (3), 669–674. doi: http://doi.org/10.15258/sst.2005.33.3.14
  11. Pietruszewski, S., Muszyński, S., Dziwulska, A. (2007). Electromagnetic field sand electromagnetic radiation as non-invasive external stimulants for seeds (selected methods and responses). International Agrophysics, 21 (1), 95–100. Available at: http://www.international-agrophysics.org/Electromagnetic-fields-and-electromagnetic-radiation-as-non-invasive-external-stimulants,106532,0,2.html
  12. Shabrangi, A., Majd, A., Sheidai, M., Nabyouni, M., Dorranian, D. (2010). Comparing Effects of Extremely Low Frequency Electromagnetic Fieldsonthe Biomass Weight of C3 and C4 Plantsin Early Vegetative Growth. PIERS Proceedings, 5, 93–98. Available at: https://www.researchgate.net/publication/268367553
  13. Poghosyan, G. H., Mukhaelyan, Zh. H. (2018). The influence of low-intensity EMI treatment on seed germination and early growth of wheat. Chemistry and Biology, 52 (2), 110–115.
  14. Marinkovic, B., Grujic, M., Marinkovic, D., Crnobarac, J., Marinkovic, J., Jacimovic, G., Mircov, D.-V. (2008). Use of biophysical methods to improve yields and quality of agricultural products. Journal of Agricultural Sciences, Belgrade, 53 (3), 235–242. doi: http://doi.org/10.2298/jas0803235m
  15. Schmidt, M., Zannini, E., Arendt, E. (2018). Recent Advances in Physical Post-Harvest Treatments for Shelf-Life Extension of Cereal Crops. Foods, 7 (4), 45. doi: http://doi.org/10.3390/foods7040045
  16. Kasyanov, G., Syazin, I., Grachev, A., Davidenko, T., Vazhenin, E. (2013). Features of Usage of Electromagnetic Field of Extremely Low Frequency for the Storage of Agricultural Products. Journal of Electromagnetic Analysis and Applications, 5 (5), 236–241. doi: http://doi.org/10.4236/jemaa.2013.55038
  17. Grishin, S. I., Kirillov, V. Kh., Shirshkov, A. K. (2014). Kompyuternyy Analiz Dannykh. Modeli, Algoritmy, Programmy. Odessa: Izd. VMV, 304.

Downloads

Published

2022-08-30

How to Cite

Stankevych, G., Kovra, Y., & Borta, A. (2022). Formation of the quality of wheat grain by extremely low frequency electromagnetic field treatment. Technology Audit and Production Reserves, 4(3(66), 38–44. https://doi.org/10.15587/2706-5448.2022.263484

Issue

Section

Food Production Technology: Reports on Research Projects