Virtual design of a measuring device integrated in electroacupuncture stimulator on Arduino

Authors

DOI:

https://doi.org/10.15587/2706-5448.2023.284037

Keywords:

electrical conductivity, biologically active points, electrostimulation, Arduino Uno, electroacupuncture, voltage divider scheme

Abstract

The object of research is the electrical conductivity of biologically active points. Biologically active points as a method of non-traditional medical procedures and diagnostics, as well as being used for therapeutic purposes. Although this method has become the subject of mass research, a complete theory of the method has not yet been formed. Based on research, it is possible to say that there are different approaches to explaining the mechanism of action. These independent studies suggest the existence of unique electrical properties in the areas of the skin where biologically active points are located. However, due to technical and methodological problems, it was not in the interest of the scientific community, and as a result of solving the problem mentioned in recent history, interest in research in this field has increased.

Nerve endings, called biologically active points or acupuncture points, are widely used in alternative medicine. The first step in electrostimulation of acupuncture points is the localization of the point. Localization is based on measuring the electrical conductivity of acupuncture points. The article discusses the virtual design of the measuring device, which is expected to be integrated with electrostimulators. As a result of the simulation, measurements were made and the accuracy class of the device was determined. Thus, it is possible to accurately measure electrical conductivity in biological objects through this device.

The proposed device is designed on the basis of a modern element base. The basic element of the device is Arduino. A voltage divider scheme was used to determine the electrical conductivity of Arduino-based biologically active points. The purpose of using a voltage divider circuit is to protect the Arduino's analog input from overvoltage. Based on the measurements, the accuracy class of the proposed device was determined. As a result of the simulations, it was determined that the absolute error of the device is 0.463056, the relative error is 0.005742, and the accuracy class is 0.0463056.

Author Biography

Gadir Gafarov, Azerbaijan State Oil and Industry University

Assistant

Department of Electronics and Automation

References

  1. Ulett, G. A., Parwatikar, S. D., Stern, J. A., Brown, M. (1978). Acupuncture, Hypnosis And Experimental Pain – II. Study with Patients. Acupuncture & Electro-Therapeutics Research, 3 (3), 191–201. doi: https://doi.org/10.3727/036012978817553131
  2. Brown, M. L., Ulett, G. A., Stern, J. A. (1974). Acupuncture Loci: Techniques for Location. The American Journal of Chinese Medicine, 2 (1), 67–74. doi: https://doi.org/10.1142/s0192415x74000080
  3. Dvadtcatiletie elektroakupunkturnoi diagnostiki (2014). Available at: http://www.eledia.ru/ Last accessed: 21.03.2019
  4. Zhang, Z.-J., Wang, X.-M., McAlonan, G. M. (2012). Neural Acupuncture Unit: A New Concept for Interpreting Effects and Mechanisms of Acupuncture. Evidence-Based Complementary and Alternative Medicine, 2012, 1–23. doi: https://doi.org/10.1155/2012/429412
  5. Johnson, M. I. (1997). Transcutaneous electrical nerve stimulation in pain management. British Journal of Midwifery, 5 (7), 400–405. doi: https://doi.org/10.12968/bjom.1997.5.7.400
  6. Pope, G., Mockett, S., Wright, J. (1995). A Survey of Electrotherapeutic Modalities: Ownership and Use in the NHS in England. Physiotherapy, 81 (2), 82–91. doi: https://doi.org/10.1016/s0031-9406(05)67050-2
  7. Gafarov, G. A. (2020). Acupuncture research methods. Journal of Applied Biotechnology and Bioengineering, 7 (6), 276‒278.
  8. Lupichev, N. L (1990). Elektropunkturnaia diagnostika. Gomeoterapiia i Fenomen Dalinodeistviia, 130.
  9. Pope, G., Mockett, S., Wright, J. (1995). A Survey of Electrotherapeutic Modalities: Ownership and Use in the NHS in England. Physiotherapy, 81 (2), 82–91. doi: https://doi.org/10.1016/s0031-9406(05)67050-2
  10. Kim, H.-S., Lee, E. S., Lee, Y. J., Lee, J. H., Lee, C.-T., Cho, Y.-J. (2015). Clinical Application of Bioelectrical Impedance Analysis and its Phase Angle for Nutritional Assessment of Critically Ill Patients. Journal of Clinical Nutrition, 7 (2), 54–61. doi: https://doi.org/10.15747/jcn.2015.7.2.54
  11. Barlea, N. M., Sibianu, H., Ciupa, R. V. (2000). Electrical detection of acupuncture points. Acta Electrotech Napocensos, 14, 59–61.
  12. Kim, M. S., Cho, Y.-C., Seo, S.-T., Son, C.-S., Kim, Y.-N. (2012). Analysis of Multifrequency Impedance of Biologic Active Points Using a Dry Electrode System. The Journal of Alternative and Complementary Medicine, 18 (9), 864–869. doi: https://doi.org/10.1089/acm.2011.0095
  13. Rahimov, R. M., Rustamova, D. F., Gafarov, G. A., Huseynov, F. H. (2023). Determination of the Bioimpedance of the Human Body Basedon the Multi-Frequency Measurement Method. European Chemical Bulletin, 12 (3), 352–361.
  14. Bosy-Westphal, A., Danielzik, S., Dörhöfer, R.-P., Later, W., Wiese, S., Müller, M. J. (2006). Phase Angle From Bioelectrical Impedance Analysis: Population Reference Values by Age, Sex, and Body Mass Index. Journal of Parenteral and Enteral Nutrition, 30 (4), 309–316. doi: https://doi.org/10.1177/0148607106030004309
  15. de França, N. A. G., Callegari, A., Gondo, F. F., Corrente, J. E., Mclellan, K. C. P., Burini, R. C., de Oliveira, E. P. (2016). Higher dietary quality and muscle mass decrease the odds of low phase angle in bioelectrical impedance analysis in Brazilian individuals. Nutrition & Dietetics, 73 (5), 474–481. doi: https://doi.org/10.1111/1747-0080.12267
  16. Pearson, S., Colbert, A. P., McNames, J., Baumgartner, M., Hammerschlag, R. (2007). Electrical Skin Impedance at Acupuncture Points. The Journal of Alternative and Complementary Medicine, 13 (4), 409–418. doi: https://doi.org/10.1089/acm.2007.6258
  17. Gafarov, G., Valehov, S. E. (2021). Design of stimulation device of biological active points using 555 timer. Herald of the Azerbaijan Engineering Academy, 13 (4), 113–120. doi: https://doi.org/10.52171/2076-0515_2021_13_04_113_120
  18. Ulett, G. A., Parwatikar, S. D., Stern, J. A., Brown, M. (1978). Acupuncture, Hypnosis And Experimental Pain – II. Study with Patients. Acupuncture & Electro-Therapeutics Research, 3 (3), 191–201. doi: https://doi.org/10.3727/036012978817553131
  19. Brown, M. L., Ulett, G. A., Stern, J. A. (1974). Acupuncture Loci: Techniques for Location. The American Journal of Chinese Medicine, 2 (1), 67–74. doi: https://doi.org/10.1142/s0192415x74000080
  20. Dvadtcatiletie elektroakupunkturnoi diagnostiki (2014). Available at: http://www.eledia.ru/ Last accessed: 21.03.2019
  21. Zhang, Z.-J., Wang, X.-M., McAlonan, G. M. (2012). Neural Acupuncture Unit: A New Concept for Interpreting Effects and Mechanisms of Acupuncture. Evidence-Based Complementary and Alternative Medicine, 2012, 1–23. doi: https://doi.org/10.1155/2012/429412
  22. Johnson, M. I. (1997). Transcutaneous electrical nerve stimulation in pain management. British Journal of Midwifery, 5 (7), 400–405. doi: https://doi.org/10.12968/bjom.1997.5.7.400
  23. Pope, G., Mockett, S., Wright, J. (1995). A Survey of Electrotherapeutic Modalities: Ownership and Use in the NHS in England. Physiotherapy, 81 (2), 82–91. doi: https://doi.org/10.1016/s0031-9406(05)67050-2
  24. Gafarov, G. A. (2020). Acupuncture research methods. Journal of Applied Biotechnology and Bioengineering, 7 (6), 276‒278.
  25. Lupichev, N. L (1990). Elektropunkturnaia diagnostika. Gomeoterapiia i Fenomen Dalinodeistviia, 130.
  26. Pope, G., Mockett, S., Wright, J. (1995). A Survey of Electrotherapeutic Modalities: Ownership and Use in the NHS in England. Physiotherapy, 81 (2), 82–91. doi: https://doi.org/10.1016/s0031-9406(05)67050-2
  27. Kim, H.-S., Lee, E. S., Lee, Y. J., Lee, J. H., Lee, C.-T., Cho, Y.-J. (2015). Clinical Application of Bioelectrical Impedance Analysis and its Phase Angle for Nutritional Assessment of Critically Ill Patients. Journal of Clinical Nutrition, 7 (2), 54–61. doi: https://doi.org/10.15747/jcn.2015.7.2.54
  28. Barlea, N. M., Sibianu, H., Ciupa, R. V. (2000). Electrical detection of acupuncture points. Acta Electrotech Napocensos, 14, 59–61.
  29. Kim, M. S., Cho, Y.-C., Seo, S.-T., Son, C.-S., Kim, Y.-N. (2012). Analysis of Multifrequency Impedance of Biologic Active Points Using a Dry Electrode System. The Journal of Alternative and Complementary Medicine, 18 (9), 864–869. doi: https://doi.org/10.1089/acm.2011.0095
  30. Rahimov, R. M., Rustamova, D. F., Gafarov, G. A., Huseynov, F. H. (2023). Determination of the Bioimpedance of the Human Body Basedon the Multi-Frequency Measurement Method. European Chemical Bulletin, 12 (3), 352–361.
  31. Bosy-Westphal, A., Danielzik, S., Dörhöfer, R.-P., Later, W., Wiese, S., Müller, M. J. (2006). Phase Angle From Bioelectrical Impedance Analysis: Population Reference Values by Age, Sex, and Body Mass Index. Journal of Parenteral and Enteral Nutrition, 30 (4), 309–316. doi: https://doi.org/10.1177/0148607106030004309
  32. de França, N. A. G., Callegari, A., Gondo, F. F., Corrente, J. E., Mclellan, K. C. P., Burini, R. C., de Oliveira, E. P. (2016). Higher dietary quality and muscle mass decrease the odds of low phase angle in bioelectrical impedance analysis in Brazilian individuals. Nutrition & Dietetics, 73 (5), 474–481. doi: https://doi.org/10.1111/1747-0080.12267
  33. Pearson, S., Colbert, A. P., McNames, J., Baumgartner, M., Hammerschlag, R. (2007). Electrical Skin Impedance at Acupuncture Points. The Journal of Alternative and Complementary Medicine, 13 (4), 409–418. doi: https://doi.org/10.1089/acm.2007.6258
  34. Gafarov, G., Valehov, S. E. (2021). Design of stimulation device of biological active points using 555 timer. Herald of the Azerbaijan Engineering Academy, 13 (4), 113–120. doi: https://doi.org/10.52171/2076-0515_2021_13_04_113_120
Virtual design of a measuring device integrated in electroacupuncture stimulator on Arduino

Downloads

Published

2023-08-04

How to Cite

Gafarov, G. (2023). Virtual design of a measuring device integrated in electroacupuncture stimulator on Arduino. Technology Audit and Production Reserves, 4(1(72), 9–15. https://doi.org/10.15587/2706-5448.2023.284037

Issue

Section

Electrical Engineering and Industrial Electronics