Analysis of modern atmospheric electrostatic field measuring instruments and methods

Authors

DOI:

https://doi.org/10.15587/2706-5448.2023.285963

Keywords:

electrostatic measurements, atmospheric electric field, electrostatic field, measuring instruments, electrostatic field mill

Abstract

The object of research is the process of measuring the strength of the atmospheric electrostatic field. This paper is devoted to an analytical review and comparative analysis of modern methods and instruments for measuring atmospheric electrostatic field strength. The results of scientific research and modern practical technologies, which are used to develop technical means and increase the accuracy of measuring the strength of electrostatic fields, are considered.

In the work, the general functional requirements for the hardware of systems for measuring the atmospheric electrostatic field strength are formed and the main directions of research and practical tasks for its creation are defined. The design features and characteristics of existing measuring instruments are considered in detail. The advantages and disadvantages of electrometers, electrostatic field mills, microelectromechanical electrostatic field mills, and electric field imaging systems are determined given their portability, sensitivity, measuring frequency, accuracy, measurement range, linearity, and cost. The analysis of the state of modern methods and measuring instruments for the strength of the electrostatic field showed that one of the best solutions for measuring the electrostatic field strength of the atmosphere today is the use of an improved electrostatic field mill.

It was determined that one of the important problems for ensuring the development of methods and means of atmospheric electrostatic field strength measuring is the need to generalize the structure of the measuring instruments and calculate its metrological characteristics. It has been established that solving the problem of increasing the accuracy of atmospheric electrostatic field strength measurement requires a comprehensive approach based on improving the design of the sensor structure of the meter, increasing the accuracy of navigation and positioning, increasing the autonomy of work, improving communication and data transmission systems, as well as ensuring high stability and reliability of work under the influence of external factors. Improving the structure and improving the characteristics of electrostatic field mills in the future will ensure the necessary accuracy, compactness, and availability for measurement and its inclusion in the automated system of atmospheric electrostatic field monitoring and forecasting.

Author Biographies

Oleksandr Povschenko, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»

Postgraduate Student

Department of Information and Measurement Technologies

Viktor Bazhenov, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»

PhD, Associate Professor

Department of Automation and Non-Destructive Testing Systems

References

  1. Whipple, F. J. W. (2007). Modern views on atmospheric electricity. Quarterly Journal of the Royal Meteorological Society, 64 (275), 199–222. doi: https://doi.org/10.1002/qj.49706427502
  2. Roble, R., Tzur, I. (1986). The global atmospheric electrical circuit. The Earth's electrical environment. Washington: National Academies Press, 206–231.
  3. Markson, R. (2007). The Global Circuit Intensity: Its Measurement and Variation over the Last 50 Years. Bulletin of the American Meteorological Society, 88 (2), 223–242. doi: https://doi.org/10.1175/bams-88-2-223
  4. Liu, C., Williams, E. R., Zipser, E. J., Burns, G. (2010). Diurnal Variations of Global Thunderstorms and Electrified Shower Clouds and Their Contribution to the Global Electrical Circuit. Journal of the Atmospheric Sciences, 67 (2), 309–323. doi: https://doi.org/10.1175/2009jas3248.1
  5. Blakeslee, R. J., Mach, D. M., Bateman, M. G., Bailey, J. C. (2014). Seasonal variations in the lightning diurnal cycle and implications for the global electric circuit. Atmospheric Research, 135-136, 228–243. doi: https://doi.org/10.1016/j.atmosres.2012.09.023
  6. Anisimov, S. V., Galichenko, S. V., Aphinogenov, K. V., Prokhorchuk, A. A. (2017). Evaluation of the Atmospheric Boundary-Layer Electrical Variability. Boundary-Layer Meteorology, 327–348. doi: https://doi.org/10.1007/s10546-017-0328-0
  7. Jacobson, E. A., Krider, E. P. (1976). Electrostatic Field Changes Produced by Florida Lightning. Journal of the Atmospheric Sciences, 33 (1), 103–117. doi: https://doi.org/10.1175/1520-0469(1976)033<0103:efcpbf>2.0.co;2
  8. Koshak, W. J., Krider, E. P. (1989). Analysis of lightning field changes during active Florida thunderstorms. Journal of Geophysical Research, 94 (D1), 1165. doi: https://doi.org/10.1029/jd094id01p01165
  9. Koshak, W. J., Krider, E. P. (1994). A Linear Method for Analyzing Lightning Field Changes. Journal of the Atmospheric Sciences, 51 (4), 473–488. doi: https://doi.org/10.1175/1520-0469(1994)051<0473:almfal>2.0.co;2
  10. Maier, L. M., Krider, E. P. (1986). The charges that are deposited by cloud-to-ground lightning in Florida. Journal of Geophysical Research, 91 (D12), 13275. doi: https://doi.org/10.1029/jd091id12p13275
  11. Murphy, M. J., Krider, E. P., Maier, M. W. (1996). Lightning charge analyses in small Convection and Precipitation Electrification (CaPE) experiment storms. Journal of Geophysical Research: Atmospheres, 101 (D23), 29615–29626. Portico. doi: https://doi.org/10.1029/96jd01538
  12. Chubb, J., Harbour, J. (2000). A system for the advance warning of risk of lightning. Paper presented at the Electrostatics Society of America ‘ESA 2000’ meeting Niagara Falls. Niagara Falls.
  13. Montanya, J., Bergas, J., Hermoso, B. (2004). Electric field measurements at ground level as a basis for lightning hazard warning. Journal of Electrostatics, 60 (2-4), 241–246. doi: https://doi.org/10.1016/j.elstat.2004.01.009
  14. Murphy, M. J., Holle, R. L., Demetriades, N. W. S. (2008). Cloud-to-ground lightning warnings using electric field mill and lightning observations. 20th International Lightning Detection Conference (ILDC). Tucson.
  15. 7 Electrostatic Instrument Manufacturers in 2023. Metoree. Available at: https://us.metoree.com/categories/static-electricity-meter/
  16. Electrostatic field measuring instrument max. ±30 kV | AD-1684A. DirectIndustry. Available at: https://www.directindustry.com/prod/d-company-limited/product-54946-1443153.html
  17. GHRC: Lightning field campaigns, detection instruments, and research proposals. Wayback Machine. Aviailable at: https://web.archive.org/web/20160307112621/http://thunder.msfc.nasa.gov/validation/validation.html#Interp
  18. Bateman, M. G., Stewart, M. F., Podgorny, S. J., Christian, H. J., Mach, D. M., Blakeslee, R. J. et al. (2007). A Low-Noise, Microprocessor-Controlled, Internally Digitizing Rotating-Vane Electric Field Mill for Airborne Platforms. Journal of Atmospheric and Oceanic Technology, 24 (7), 1245–1255. doi: https://doi.org/10.1175/jtech2039.1
  19. Chauzy, S., Médale, J.-C., Prieur, S., Soula, S. (1991). Multilevel measurement of the electric field underneath a thundercloud: 1. A new system and the associated data processing. Journal of Geophysical Research, 96 (D12), 22319. doi: https://doi.org/10.1029/91jd02031
  20. Winn, W. P., Moore, C. B. (1971). Electric field measurements in thunderclouds using instrumented rockets. Journal of Geophysical Research, 76 (21), 5003–5017. doi: https://doi.org/10.1029/jc076i021p05003
  21. Ackermann, L., Bouwers, A., Carlsson, C., Dümmlin, K., Goering, U., Haxel, O. et al. (1968). Encyclopedia of Medical Radiology. Verlag Berlin Heidelberg.
  22. Acharya, Y. B. (2000). A wide range linear electrometer. Review of Scientific Instruments, 71 (6), 2585–2588. doi: https://doi.org/10.1063/1.1150653
  23. Harrison, R. G. (1997). An antenna electrometer system for atmospheric electrical measurements. Review of Scientific Instruments, 68 (3), 1599–1603. doi: https://doi.org/10.1063/1.1147932
  24. Harrison, R. G., Marlton, G. J., Nicoll, K. A., Airey, M. W., Williams, P. D. (2017). A self-calibrating wide range electrometer for in-cloud measurements. Review of Scientific Instruments, 88 (12). doi: https://doi.org/10.1063/1.5011177
  25. Antunes de Sá, A., Marshall, R., Sousa, A., Viets, A., Deierling, W. (2020). An Array of Low‐Cost, High‐Speed, Autonomous Electric Field Mills for Thunderstorm Research. Earth and Space Science, 7 (11). doi: https://doi.org/10.1029/2020ea001309
  26. Cui, Y., Yuan, H., Song, X., Zhao, L., Liu, Y., Lin, L. (2018). Model, Design, and Testing of Field Mill Sensors for Measuring Electric Fields Under High-Voltage Direct-Current Power Lines. IEEE Transactions on Industrial Electronics, 65 (1), 608–615. doi: https://doi.org/10.1109/tie.2017.2719618
  27. Buguet, M., Lalande, P., Laroche, P., Blanchet, P., Bouchard, A., Chazottes, A. (2021). Thundercloud Electrostatic Field Measurements during the Inflight EXAEDRE Campaign and during Lightning Strike to the Aircraft. Atmosphere, 12 (12), 1645. doi: https://doi.org/10.3390/atmos12121645
  28. Hsu, C. H., Muller, R. S. (1991). Micromechanical electrostatic voltmeter. TRANSDUCERS ’91: 1991 International Conference on Solid-State Sensors and Actuators. Digest of Technical Papers. San Francisco. doi: https://doi.org/10.1109/sensor.1991.148966
  29. Yong Zhu, Lee, J. E.-Y., Seshia, A. A. (2008). A Resonant Micromachined Electrostatic Charge Sensor. IEEE Sensors Journal, 8 (9), 1499–1505. doi: https://doi.org/10.1109/jsen.2008.923597
  30. Peng, C., Chen, X., Bai, Q., Luo, L., Xia, S. (2006). A novel high performance micromechanical resonant electrostatic field sensor used in atmospheric electric field detection. Proceedings of the IEEE International Conference on MICRO Electro Mechanical Systems. Las Vegas. doi: https://doi.org/10.1109/memsys.2006.1627895
  31. Chen, X., Peng, C., Xia, S. (2008). Design of a thermally driven resonant miniature electric field sensor with feedback control. Proceedings of the IEEE International Conference on Nano/micro Engineered and Molecular Systems. Sanya. doi: https://doi.org/10.1109/nems.2008.4484329
  32. Riehl, P. S., Scott, K. L., Muller, R. S., Howe, R. T., Yasaitis, J. A. (2003). Electrostatic charge and field sensors based on micromechanical resonators. Journal of Microelectromechanical Systems, 12 (5), 577–589. doi: https://doi.org/10.1109/jmems.2003.818066
  33. Gong, C., Tao, H., Peng, C., Bai, Q., Chen, S., Xia, S. (2005). A novel miniature interlacing vibrating electric field sensor. Proceedings of the IEEE Sensors. Irvine. doi: https://doi.org/10.1109/icsens.2005.1597722
  34. Yang, P., Peng, C., Zhang, H., Liu, S., Fang, D., Xia, S. (2011). A high sensitivity SOI electric-field sensor with novel comb-shaped microelectrodes. Proceedings of the 16th International Solid-State Sensors, Actuators and Microsystems Conference. Beijing. doi: https://doi.org/10.1109/transducers.2011.5969165
  35. Horenstein, M. N., Stone, P. R. (2001). A micro-aperture electrostatic field mill based on MEMS technology. Journal of Electrostatics, 51-52, 515–521. doi: https://doi.org/10.1016/s0304-3886(01)00048-1
  36. Bahreyni, B., Wijeweera, G., Shafai, C., Rajapakse, A. (2007). Design and testing of a field-chopping electric field sensor using thermal actuators with mechanically amplified response. Proceedings of the Solid-State Sensors, Actuators and Microsystems Conference. Lyon. doi: https://doi.org/10.1109/sensor.2007.4300404
  37. Bahreyni, B., Wijeweera, G., Shafai, C., Rajapakse, A. (2008). Analysis and Design of a Micromachined Electric-Field Sensor. Journal of Microelectromechanical Systems, 17 (1), 31–36. doi: https://doi.org/10.1109/jmems.2007.911870
  38. Huang, J., Wu, X., Wang, X., Yan, X., Lin, L. (2015). A novel high-sensitivity electrostatic biased electric field sensor. Journal of Micromechanics and Microengineering, 25 (9), 095008. doi: https://doi.org/10.1088/0960-1317/25/9/095008
  39. Wang, Y., Fang, D., Feng, K., Ren, R., Chen, B., Peng, C., Xia, S. (2015). A novel micro electric field sensor with X–Y dual axis sensitive differential structure. Sensors and Actuators A: Physical, 229, 1–7. doi: https://doi.org/10.1016/j.sna.2015.03.013
  40. Ma, Q., Huang, K., Yu, Z., Wang, Z. (2017). An electric field sensor with double-layer floating structure for measurement of dc synthetic field coupled with ion flow. Proceedings of the International Conference on Solid-State Sensors, Actuators and Microsystems. Kaohsiung. doi: https://doi.org/10.1109/transducers.2017.7994192
  41. Underwood, G. C. (2019). A MEMS Dual Vertical Electrometer and Electric Field-Mill. Aviailable at: https://scholar.afit.edu/etd/2288
  42. Ling, B., Wang, Y., Peng, C., Li, B., Chu, Z., Li, B., Xia, S. (2017). Single-chip 3D electric field microsensor. Frontiers of Mechanical Engineering, 12 (4), 581–590. doi: https://doi.org/10.1007/s11465-017-0454-x
  43. Chu, Z., Peng, C., Ren, R., Ling, B., Zhang, Z., Lei, H., Xia, S. (2018). A High Sensitivity Electric Field Microsensor Based on Torsional Resonance. Sensors, 18 (1), 286. doi: https://doi.org/10.3390/s18010286
  44. Smith, J. R. (1999). Electric field imaging. Massachusetts Institute of Technology.
  45. Smith, J. R., Garcia, E., Wistort, R., Krishnamoorthy, G. (2007). Electric field imaging pretouch for robotic graspers. 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, 676–683. doi: https://doi.org/10.1109/iros.2007.4399609
  46. Electric Field Imaging System. T2 Portal. NASA Technology Transfer Portal Home. Available at: https://technology.nasa.gov/patent/LAR-TOPS-116 last accessed: 15.07.2023
  47. Generazio, E. R. (2017). Electric potential and electric field imaging. AIP Conference Proceedings. AIP Publishing, 1806 (1). doi: https://doi.org/10.1063/1.4974566
  48. Generazio, E. R. (2016). Pat. No. 9,279,719 USA. Electric field quantitative measurement system and method. 08.05.2016.
  49. Generazio, E. R. (2017). Pat. No. 9,804,199 USA. Ephemeral electric potential and electric field sensor. 31.10.2017.
  50. Generazio, E. R. (2017). Pat. No. 9,559,616 USA. Quasi-static electric field generator. 31.01.2017.
  51. Generazio, E. R. (2020). Pat. No. 10,712,378 USA. Dynamic multidimensional electric potential and electric field quantitative measurement system and method. 14.07.2020.
  52. Generazio, E. R. (2021). Pat. No. 10,900,930 USA. Method for phonon assisted creation and annihilation of subsurface electric dipoles. 26.01.2021.
  53. Generazio, E. R. (2022). Pat. No. 11,293,964 USA. Dynamic multidimensional electric potential and electric field quantitative measurement system and method. 05.04.2022.
  54. Generazio, E. R. (2022). Pat. No. 11,360,048 USA. Method for phonon assisted creation and annihilation of subsurface electric dipoles. 14.07.2022.
  55. Mens, L. H. M. (2007). Advances in Cochlear Implant Telemetry: Evoked Neural Responses, Electrical Field Imaging, and Technical Integrity. Trends in Amplification, 11 (3), 143–159. doi: https://doi.org/10.1177/1084713807304362
  56. NASA Technical Reports Server (NTRS). Available at: https://ntrs.nasa.gov/api/citations/20160008937/downloads/20160008937.pdf
  57. Generazio, E. R. (2019). Pat. No. 10,281,430 USA. Identification and characterization of remote objects by electric charge tunneling, injection, and induction, and an erasable organic molecular memory. 07.05.2019.
  58. Generazio, E. R. (2020). Pat. No. 10,620,252 USA. Electric field imaging system. 14.04.2020.
Analysis of modern atmospheric electrostatic field measuring instruments and methods

Downloads

Published

2023-08-17

How to Cite

Povschenko, O., & Bazhenov, V. (2023). Analysis of modern atmospheric electrostatic field measuring instruments and methods. Technology Audit and Production Reserves, 4(1(72), 16–24. https://doi.org/10.15587/2706-5448.2023.285963

Issue

Section

Electrical Engineering and Industrial Electronics