Airborne dust pollution emitted by El Hadjar Metallurgical Complex: quantification, characterization, and occupational health hazards

Authors

DOI:

https://doi.org/10.15587/2706-5448.2023.289353

Keywords:

occupational illnesses, particulate pollution, Algerian pollution norms, environmental impacts, Annaba

Abstract

The iron deposits of Ouenza and Boukhadra represent one of the main sources of iron ore supply for the Algerian steel industry. Being a fundamental wealth available to Algeria, the exploitation of iron ores and its use causes strong negative consequences on the environment, mainly by the expansion of dust, which will be a source of environmental degradation. The metallurgical industry is an integral part of the Algerian economy. Environmental problems that negatively affect the health of people and the environment is air pollution. These issues are relevant to the site and the town of Annaba, where the metallurgical industry is developed. Environmental awareness is characterized by strong environmental sensitization; especially in urban areas with metallurgical pollution sources. The object of this study is taking samples from sites that generate more dust within the steel complex plant. This study aims to characterize steelmaking dust from different sites of the plant in order to identify the mineral phases and their chemical compositions. The various analytical methods used include physico-chemical analysis, X-ray fluorescence (XRF), crystal phases, crystal size, lattice parameters, microdeformations, laser granulometry analysis, X-ray diffraction, microscopy Electronic Scanning and Analysis (EDS) Energy Dispersion Spectroscopy. It was found that the average monthly quantity of dust released by the dust collectors of the Agglomerated Material Preparation (AMP) unit is 108.45 tons. The results obtained from the dust samples analysis of dust samples from the different points of the site differ in their mineral and chemical composition. The research confirmed the presence of iron oxides, silicon, many different mineral phases. The results of dimensional analysis prove that the two samples are different in their sizes ESP1et and ESP2 is coarser than ESP3 and FF3A, these results can lead to long-term occupational illnesses.

Author Biographies

Fares Boutarfa, Badji Mokhtar University

Postgraduate Student

Laboratory of Valorization of Mining Resources and Environment

Department of Mining

Abdelaziz Idres, Badji Mokhtar University

Professor

Laboratory of Valorization of Mining Resources and Environment

Department of Mining

Zohir Mekti, Badji Mokhtar University

PhD in Mining Engineering, Lecturer

Department of Mining

Radouane Graine, Research Center in Industrial Technologies, CRTI

PhD, Researcher

Fahem Tiour, National Polytechnic School

PhD in Mining Engineering

Mining Engineering Laboratory

Department of Mining Engineering

Nadiia Dovbash, National Scientific Centre «Institute of Agriculture of the National Academy of Agricultural Sciences»

PhD, Researcher

 

Aissa Benselhoub, Environmental Research Center (C.R.E)

PhD, Associate Researcher

Stefano Bellucci, INFN-Laboratori Nazionali di Frascati

Senior Reasearcher

References

  1. Kharytonov, M., Benselhoub, A., Klimkina, I., Bouhedja, A., Idres, A., Aissi, A. (2016). Air pollution mapping in the Wilaya of Annaba (NE of Algeria). Mining Science, 23, 183–189. doi: https://doi.org/10.5277/msc162315
  2. Benselhoub, A., Kanli, A. I. (2020). Environmental Impacts of Air Pollution on Human Health in Annaba Region (Northeast of Algeria). Toxic Chemical and Biological Agents. Springer, 209–216. doi: https://doi.org/10.1007/978-94-024-2041-8_12
  3. Biletska, E. M., Onul, N. M., Nikonenko, V. I. (2018). Metallurgical enterprises as a source of atmospheric air pollution and a risk factor for deteriorating population health. Medicni Perspektivi (Medical Perspectives), 23 (3 (part1)), 17–22. doi: https://doi.org/10.26641/2307-0404.2018.3(part1).142329
  4. Manisalidis, I., Stavropoulou, E., Stavropoulos, A., Bezirtzoglou, E. (2020). Environmental and Health Impacts of Air Pollution: A Review. Frontiers in Public Health, 8. doi: https://doi.org/10.3389/fpubh.2020.00014
  5. Logvinov, Y. V., Laktionova, O. E., Melikhov, A. A., Kolosok, V., Vereskun, M., Mandra, N. G. (2021). Risk management in the method of calculating the economic effect of a closed air purification system. 15th International Conference Monitoring of Geological Processes and Ecological Condition of the Environment. doi: https://doi.org/10.3997/2214-4609.20215k2043
  6. Urošević, S., Vuković, M., Pejčić, B., Štrbac, N. (2018). Mining-metallurgical sources of pollution in eastern serbia and environmental consciousness. Revista Internacional de Contaminación Ambiental, 34 (1), 103–115. doi: https://doi.org/10.20937/rica.2018.34.01.09
  7. Anwar, M. N., Shabbir, M., Tahir, E., Iftikhar, M., Saif, H., Tahir, A. et al. (2021). Emerging challenges of air pollution and particulate matter in China, India, and Pakistan and mitigating solutions. Journal of Hazardous Materials, 416, 125851. doi: https://doi.org/10.1016/j.jhazmat.2021.125851
  8. Tepina, M. S., Gorlenko, N. V., Murzin, M. A. (2022). Analyzing the Impact of Dust Emissions from Metallurgical Enterprises on the Environment. IOP Conference Series: Earth and Environmental Science, 988 (2), 022063. doi: https://doi.org/10.1088/1755-1315/988/2/022063
  9. Jabłońska, M., Rachwał, M., Wawer, M., Kądziołka-Gaweł, M., Teper, E., Krzykawski, T., Smołka-Danielowska, D. (2021). Mineralogical and Chemical Specificity of Dusts Originating from Iron and Non-Ferrous Metallurgy in the Light of Their Magnetic Susceptibility. Minerals, 11 (2), 216. doi: https://doi.org/10.3390/min11020216
  10. Chaulya, S. K., Chowdhury, A., Kumar, S., Singh, R. S., Singh, S. K., Singh, R. K., Prasad, G. M., Mandal, S. K., Banerjee, G. (2021). Fugitive dust emission control study for a developed smart dry fog system. Journal of Environmental Management, 285, 112116. doi: https://doi.org/10.1016/j.jenvman.2021.112116
  11. Khirouni, N., Charvet, A., Drisket, C., Ginestet, A., Thomas, D., Bémer, D. (2021). Precoating for improving the cleaning of filter media clogged with metallic nanoparticles. Process Safety and Environmental Protection, 147, 311–319. doi: https://doi.org/10.1016/j.psep.2020.09.045
  12. Idres, A., Abdelmalek, C., Bouhedja, A., Benselhoub, A., Bounouala, M. (2017). Valorization of mining waste from Ouenza iron ore mine (eastern Algeria). REM – International Engineering Journal, 70 (1), 85–92. doi: https://doi.org/10.1590/0370-44672016700051
  13. Rouaiguia, I., Bounouala, M., Abdelmalek, C., Idres, A., Benselhoub, A. (2022). Optical sorting technology for waste management from the Boukhadra iron ore mine (NE Algeria). REM – International Engineering Journal, 75 (1), 55–65. doi: https://doi.org/10.1590/0370-44672017750194
  14. Arbib, E. H., Elouadi, B., Chaminade, J. P., Darriet, J. (1996). Brief communication: new refinement of the crystal structure of o-p2o5. Journal of Solid State Chemistry, 127 (2), 350–353. doi: https://doi.org/10.1006/jssc.1996.0393
  15. Machatschki, F (1936). Kristallstruktur von Tiefquarz. Fortschritte der Mineralogie, 20, 45–47.
  16. Graham, J. (1960). Lattice spacings and colour in the system alumina-chromic oxide. Journal of Physics and Chemistry of Solids, 17 (1-2), 18–25. doi: https://doi.org/10.1016/0022-3697(60)90170-0
  17. Pascard, R., Pascard-Billy, C. (1965). Structure précise de l’anhydride sulfurique. Acta Crystallographica, 18 (5), 830–834. doi: https://doi.org/10.1107/s0365110x65002049
  18. Perkins, D. A., Attfield, J. P. (1991). Resonant powder X-ray determination of the cation distribution in FeNi2BO5. Journal of the Chemical Society, Chemical Communications, 4, 229–231. doi: https://doi.org/10.1039/c39910000229
  19. Kotov, V., Raikhshtein, S. (1941). Structure of Calcium Peroxide. Zhurnal Fizicheskoi Khimii, 15, 1057–1058.
  20. Vannerberg, N. G. (1959). The formation and structure of magnesium peroxide. Ark Kemi, 14, 99–105.
  21. Schiferl, D., Barrett, C. S. (1969). The crystal structure of arsenic at 4.2, 78 and 299°K. Journal of Applied Crystallography, 2 (1), 30–36. doi: https://doi.org/10.1107/s0021889869006443
  22. Barrett, C. S. (1956). X-ray study of the alkali metals at low temperatures. Acta Crystallographica, 9 (8), 671–677. doi: https://doi.org/10.1107/s0365110x56001790
  23. Kim-Zajonz, J., Werner, S., Schulz, H. (1999). High pressure single crystal X-ray diffraction study on ruby up to 31 GPa. Zeitschrift Für Kristallographie – Crystalline Materials, 214 (6), 331–336. doi: https://doi.org/10.1524/zkri.1999.214.6.331
  24. Okudera, H., Kihara, K., Matsumoto, T. (1996). Temperature dependence of structure parameters in natural magnetite: single crystal X-ray studies from 126 to 773 K. Acta Crystallographica Section B Structural Science, 52 (3), 450–457. doi: https://doi.org/10.1107/s0108768196000845
  25. Schmahl, N. G., Eikerling, G. F. (1968). Über Kryptomodifikationen des Cu(II)-Oxids. Zeitschrift Für Physikalische Chemie, 62 (5_6), 268–279. doi: https://doi.org/10.1524/zpch.1968.62.5_6.268
  26. Post, B., Schwartz, R. S., Fankuchen, I. (1952). The crystal structure of sulfur dioxide. Acta Crystallographica, 5 (3), 372–374. doi: https://doi.org/10.1107/s0365110x5200109x
  27. Patterson, A. L. (1939). The Scherrer Formula for X-Ray Particle Size Determination. Physical Review, 56 (10), 978–982. doi: https://doi.org/10.1103/physrev.56.978
  28. Eze, V. C., Onwukeme, V., Enyoh, C. E. (2020). Pollution status, ecological and human health risks of heavy metals in soil from some selected active dumpsites in Southeastern, Nigeria using energy dispersive X-ray spectrometer. International Journal of Environmental Analytical Chemistry, 102 (16), 3722–3743. doi: https://doi.org/10.1080/03067319.2020.1772778
  29. Frey, H. C., Li, S. (2003). Methods for Quantifying Variability and Uncertainty in AP-42 Emission Factors: Case Studies for Natural Gas-Fueled Engines. Journal of the Air & Waste Management Association, 53 (12), 1436–1447. doi: https://doi.org/10.1080/10473289.2003.10466317
  30. Rumyantseva, N., Primak, E., Uljanov, A., Kiss, V. (2019). Assessment of an occupational risk using injury safety indicators. IOP Conference Series: Materials Science and Engineering, 666 (1), 012090. doi: https://doi.org/10.1088/1757-899x/666/1/012090
Airborne dust pollution emitted Byel Hadjar Metallurgical Complex: quantification, characterization and occupational health hazards

Downloads

Published

2023-10-23

How to Cite

Boutarfa, F., Idres, A., Mekti, Z., Graine, R., Tiour, F., Dovbash, N., Benselhoub, A., & Bellucci, S. (2023). Airborne dust pollution emitted by El Hadjar Metallurgical Complex: quantification, characterization, and occupational health hazards. Technology Audit and Production Reserves, 5(3(73), 20–28. https://doi.org/10.15587/2706-5448.2023.289353

Issue

Section

Ecology and Environmental Technology