Development of a complex model for processing various data

Authors

DOI:

https://doi.org/10.15587/2706-5448.2023.293274

Keywords:

decision-making support systems, efficiency of decisions, dynamics of modeling, different types of data

Abstract

The object of the research is intelligent decision-making support systems. The scientific problem that is solved in the research is the development of a comprehensive model for processing various types of data in intelligent decision-making support systems (DMSS). The relevance of the research lies in the fact that in intelligent DMSS circulate different in origin and units of measurement data obtained from various technical devices of obtaining information.

The essence of the integrated approach in modeling is that two partial models are proposed: a model for processing different types of data in intelligent decision-making support systems and a model for processing homogeneous data in intelligent decision-making support systems.

Analysis of the intelligent DMSS model for processing different types of data allows to draw such a conclusion. While solving the problem of processing different types of data, a model of intelligent DMSS is proposed, in contrast to traditional, even for the process of solving partial problems incorrectly started by experts with the help of self-organization, expressed in the coordination of partial tasks of the decision maker, striving for an ideal solution to the problem of processing different types of data, which increases the efficiency of finding an acceptable result for processing different types of data.

The homogeneous data processing model is based on the idea that the same processing of homogeneous data in intelligent DMSS can be solved in parallel by different functional elements. Element integration relationships arise as internal non-verbal images in the user's memory, which can compare the dynamics of modeling a task for processing different types of data in intelligent DMSS from different points of view, which allows to see what modeling does not give using one model.

The direction of further research should be considered the improvement of information processing methods in intelligent decision-making support systems.

Author Biographies

Oleksandr Gaman, Kruty Heroes Military Institute of Telecommunications and Information Technology

Postgraduate Student

Scientific and Organizational Department

Ihor Kiris, Research Institute of Military Intelligence

Senior Researcher

References

  1. Shevchenko, A. I., Baranovskyi, S. V., Bilokobylskyi, O. V., Bodianskyi, Ye. V., Bomba, A. Ya. et al.; Shevchenko, A. I. (Ed.) (2023). Stratehiia rozvytku shtuchnoho intelektu v Ukraini. Kyiv: IPShI, 305.
  2. Shyshatskyi, A. V., Bashkyrov, O. M., Kostyna, O. M. (2015). Rozvytok intehrovanykh system zv’iazku ta peredachi danykh dlia potreb Zbroinykh Syl. Ozbroiennia ta viiskova tekhnika, 1 (5), 35–40.
  3. Dudnyk, V., Sinenko, Y., Matsyk, M., Demchenko, Y., Zhyvotovskyi, R., Repilo, I. et al. (2020). Development of a method for training artificial neural networks for intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (2 (105)), 37–47. doi: https://doi.org/10.15587/1729-4061.2020.203301
  4. Sova, O., Shyshatskyi, A., Salnikova, O., Zhuk, O., Trotsko, O., Hrokholskyi, Y. (2021). Development of a method for assessment and forecasting of the radio electronic environment. EUREKA: Physics and Engineering, 4, 30–40. doi: https://doi.org/10.21303/2461-4262.2021.001940
  5. Pievtsov, H., Turinskyi, O., Zhyvotovskyi, R., Sova, O., Zvieriev, O., Lanetskii, B., Shyshatskyi, A. (2020). Development of an advanced method of finding solutions for neuro-fuzzy expert systems of analysis of the radioelectronic situation. EUREKA: Physics and Engineering, 4, 78–89. doi: https://doi.org/10.21303/2461-4262.2020.001353
  6. Zuiev, P., Zhyvotovskyi, R., Zvieriev, O., Hatsenko, S., Kuprii, V., Nakonechnyi, O. et al. (2020). Development of complex methodology of processing heterogeneous data in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 4 (9 (106)), 14–23. doi: https://doi.org/10.15587/1729-4061.2020.208554
  7. Shyshatskyi, A., Zvieriev, O., Salnikova, O., Demchenko, Ye., Trotsko, O., Neroznak, Ye. (2020). Complex Methods of Processing Different Data in Intellectual Systems for Decision Support System. International Journal of Advanced Trends in Computer Science and Engineering, 9 (4), 5583–5590. doi: https://doi.org/10.30534/ijatcse/2020/206942020
  8. Yeromina, N., Kurban, V., Mykus, S., Peredrii, O., Voloshchenko, O., Kosenko, V. et al. (2021). The Creation of the Database for Mobile Robots Navigation under the Conditions of Flexible Change of Flight Assignment. International Journal of Emerging Technology and Advanced Engineering, 11 (5), 37–44. doi: https://doi.org/10.46338/ijetae0521_05
  9. Rotshtein, A. P. (1999). Intellektualnye tekhnologii identifikatcii: nechetkie mnozhestva, geneticheskie algoritmy, neironnye seti. Vinnitca: UNIVERSUM, 320.
  10. Ramaji, I. J., Memari, A. M. (2018). Interpretation of structural analytical models from the coordination view in building information models. Automation in Construction, 90, 117–133. doi: https://doi.org/10.1016/j.autcon.2018.02.025
  11. Pérez-González, C. J., Colebrook, M., Roda-García, J. L., Rosa-Remedios, C. B. (2019). Developing a data analytics platform to support decision making in emergency and security management. Expert Systems with Applications, 120, 167–184. doi: https://doi.org/10.1016/j.eswa.2018.11.023
  12. Chen, H. (2018). Evaluation of Personalized Service Level for Library Information Management Based on Fuzzy Analytic Hierarchy Process. Procedia Computer Science, 131, 952–958. doi: https://doi.org/10.1016/j.procs.2018.04.233
  13. Chan, H. K., Sun, X., Chung, S.-H. (2019). When should fuzzy analytic hierarchy process be used instead of analytic hierarchy process? Decision Support Systems, 125, 113114. doi: https://doi.org/10.1016/j.dss.2019.113114
  14. Osman, A. M. S. (2019). A novel big data analytics framework for smart cities. Future Generation Computer Systems, 91, 620–633. doi: https://doi.org/10.1016/j.future.2018.06.046
  15. Gödri, I., Kardos, C., Pfeiffer, A., Váncza, J. (2019). Data analytics-based decision support workflow for high-mix low-volume production systems. CIRP Annals, 68 (1), 471–474. doi: https://doi.org/10.1016/j.cirp.2019.04.001
  16. Harding, J. L. (2013). Data quality in the integration and analysis of data from multiple sources: some research challenges. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-2/W1, 59–63. doi: https://doi.org/10.5194/isprsarchives-xl-2-w1-59-2013
  17. Kosko, B. (1986). Fuzzy cognitive maps. International Journal of Man-Machine Studies, 24 (1), 65–75. doi: https://doi.org/10.1016/s0020-7373(86)80040-2
  18. Gorelova, G. V. (2013). Kognitivnyi podkhod k imitatcionnomu modelirovaniiu slozhnykh sistem. Izvestiia IuFU. Tekhnicheskie nauki, 3, 239–250.
  19. Orouskhani, M., Orouskhani, Y., Mansouri, M., Teshnehlab, M. (2013). A Novel Cat Swarm Optimization Algorithm for Unconstrained Optimization Problems. International Journal of Information Technology and Computer Science, 5 (11), 32–41. doi: https://doi.org/10.5815/ijitcs.2013.11.04
Development of a complex model for processing various data

Downloads

Published

2023-12-18

How to Cite

Gaman, O., & Kiris, I. (2023). Development of a complex model for processing various data. Technology Audit and Production Reserves, 6(2(74), 50–55. https://doi.org/10.15587/2706-5448.2023.293274

Issue

Section

Systems and Control Processes