Comprehensive physicochemical characterization of Algerian coal powders for the engineering of advanced sustainable materials

Authors

DOI:

https://doi.org/10.15587/2706-5448.2024.299270

Keywords:

coal, SEM, XRD, FTIR, RAMAN, environmental remediation, energy storage, sustainable energy solutions

Abstract

The object of the research is the intriguing and versatile material known as coal that attracted a lot of attention lately because of its potential use in a variety of fields, including cutting-edge building materials, environmental remediation methods, and creative energy storage solutions. This study presents an extensive characterization of Algerian natural coal powders, employing a multifaceted analytical approach that includes Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Raman Spectroscopy, to reveal their physicochemical properties including morphology, particle size distribution, crystalline structure, and functional groups.

The SEM analysis unveiled a heterogeneous morphology with a broad particle size distribution, indicative of the coal's complex structure. The XRD findings, refined using Rietveld analysis, distinguish Carbon (C) and Silicon Dioxide (SiO2) as the primary phases, with crystallite sizes measuring 18.7539 nm for C and 16.6291 nm for SiO2. These phases constitute 98.8 % and 12 % of the composition, respectively, while the presence of quartz underscores the coal’s geological background and its thermal resilience.

Regarding the results of the FTIR spectroscopy, absorption peaks corresponding to various functional groups are highlighted, suggesting a rich organic and inorganic composition. Raman spectroscopy corroborates the presence of disordered and graphitic carbon structures, emphasizing the coal's potential for diverse applications. These findings underline the significance of Algerian coal powders for environmental remediation, energy storage, and advanced construction materials, contributing to the advancement of sustainable energy solutions.

Author Biographies

Meriem Ferfar, Environmental Research Center (C.R.E)

PhD, Researcher

Elfahem Sakher, African University Ahmed Draia; Environmental Research Center (C.R.E)

PhD, Lecturer

Laboratory of Energy Environment and Information System (LEEIS)

Department of Material Science, Faculty of Sciences and Technology

Associate Researcher

Amina Bouras, Badji Mokhtar University

Postgraduate Student

Aissa Benselhoub, Environmental Research Center (C.R.E)

Associate Researcher

Nadir Hachemi, African University Ahmed Draia

Postgraduate Student

Laboratory of Energy Environment and Information System (LEEIS)

Department of Material Science, Faculty of Science and Technology

Mohammed Massaoudi, African University Ahmed Draia

PhD, Lecturer

Department of Biological Sciences

Nadiia Dovbash, National Scientific Centre «Institute of Agriculture of the National Academy of Agricultural Sciences»

Researcher

Stefano Bellucci, INFN-Laboratori Nazionali di Frascati

Senior Researcher

References

  1. Cui, B., Wu, B., Wang, M., Jin, X., Shen, Y., Chang, L. (2024). A preliminary study on the quality evaluation of coking coal from its structure thermal transformation: Applications of fluidity and swelling indices. Fuel, 355, 129418. doi: https://doi.org/10.1016/j.fuel.2023.129418
  2. Li, J., Shan, Y., Ni, P., Cui, J., Li, Y., Zhou, J. (2024). Mechanics, durability, and microstructure analysis of marine soil stabilized by an eco-friendly calcium carbide residue-activated coal gangue geopolymer. Case Studies in Construction Materials, 20, e02687. doi: https://doi.org/10.1016/j.cscm.2023.e02687
  3. Akimbekov, N. S., Digel, I., Tastambek, K. T., Marat, A. K., Turaliyeva, M. A., Kaiyrmanova, G. K. (2022). Biotechnology of Microorganisms from Coal Environments: From Environmental Remediation to Energy Production. Biology, 11 (9), 1306. doi: https://doi.org/10.3390/biology11091306
  4. Wu, F., Liu, Y., Gao, R. (2024). Challenges and opportunities of energy storage technology in abandoned coal mines: A systematic review. Journal of Energy Storage, 83, 110613. doi: https://doi.org/10.1016/j.est.2024.110613
  5. Zhao, T., Yao, Y., Wang, M., Chen, R., Yu, Y., Wu, F., Zhang, C. (2017). Preparation of MnO2-Modified Graphite Sorbents from Spent Li-Ion Batteries for the Treatment of Water Contaminated by Lead, Cadmium, and Silver. ACS Applied Materials & Interfaces, 9 (30), 25369–25376. doi: https://doi.org/10.1021/acsami.7b07882
  6. Cheng, Y., Jiang, H., Zhang, X., Cui, J., Song, C., Li, X. (2017). Effects of coal rank on physicochemical properties of coal and on methane adsorption. International Journal of Coal Science & Technology, 4 (2), 129–146. doi: https://doi.org/10.1007/s40789-017-0161-6
  7. Xu, Y., Huo, X., Wang, L., Gong, X., Lv, Z., Zhao, T. (2023). Study of the Microstructure of Coal at Different Temperatures and Quantitative Fractal Characterization. ACS Omega, 8 (25), 23098–23111. doi: https://doi.org/10.1021/acsomega.3c02480
  8. Zhang, N., Qi, S.-Y., Guo, Y.-F., Wang, P.-F., Ren, N., Yi, T.-F. (2023). Approaching high-performance lithium storage materials of CoNiO2 microspheres wrapped coal tar pitch-derived porous carbon. Dalton Transactions, 52 (25), 8704–8715. doi: https://doi.org/10.1039/d3dt01263h
  9. Dhara, A., Sain, S., Sadhukhan, P., Das, S., Pradhan, S. K. (2019). Effect of lattice distortion in optical properties of CeO2 nanocrystals on Mn substitution by mechanical alloying. Journal of Alloys and Compounds, 786, 215–224. doi: https://doi.org/10.1016/j.jallcom.2019.01.350
  10. Aggarwal, J., Habicht-Mauche, J., Juarez, C. (2008). Application of heavy stable isotopes in forensic isotope geochemistry: A review. Applied Geochemistry, 23 (9), 2658–2666. doi: https://doi.org/10.1016/j.apgeochem.2008.05.016
  11. Sakher, E., Loudjani, N., Benchiheub, M., Belkahla, S., Bououdina, M. (2017). Microstructure Characterization of Nanocrystalline Ni50Ti50 Alloy Prepared Via Mechanical Alloying Method Using the Rietveld Refinement Method Applied to the X-Ray Diffraction. Nanosistemi, Nanomateriali, Nanotehnologii, 15 (3), 401–416. doi: https://doi.org/10.15407/nnn.15.03.0401
  12. Yu, S., Bo, J., Ming, L., Chenliang, H., Shaochun, X. (2020). A review on pore-fractures in tectonically deformed coals. Fuel, 278, 118248. doi: https://doi.org/10.1016/j.fuel.2020.118248
  13. Al Biajawi, M. I., Embong, R., Muthusamy, K., Ismail, N., Obianyo, I. I. (2022). Recycled coal bottom ash as sustainable materials for cement replacement in cementitious Composites: A review. Construction and Building Materials, 338, 127624. doi: https://doi.org/10.1016/j.conbuildmat.2022.127624
  14. Xu, M., Yu, D., Yao, H., Liu, X., Qiao, Y. (2011). Coal combustion-generated aerosols: Formation and properties. Proceedings of the Combustion Institute, 33 (1), 1681–1697. doi: https://doi.org/10.1016/j.proci.2010.09.014
  15. Cai, L., Pan, X., Chen, X., Zhao, C. (2012). Flow characteristics and stability of dense-phase pneumatic conveying of pulverized coal under high pressure. Experimental Thermal and Fluid Science, 41, 149–157. doi: https://doi.org/10.1016/j.expthermflusci.2012.04.011
  16. Matjie, R. H., Li, Z., Ward, C. R., Bunt, J. R., Strydom, C. A. (2016). Determination of mineral matter and elemental composition of individual macerals in coals from Highveld mines. Journal of the Southern African Institute of Mining and Metallurgy, 116 (2). doi: https://doi.org/10.17159/2411-9717/2016/v116n2a8
  17. Zheng, H., Xu, R., Zhang, J., Daghagheleh, O., Schenk, J., Li, C., Wang, W. (2021). A Comprehensive Review of Characterization Methods for Metallurgical Coke Structures. Materials, 15 (1), 174. doi: https://doi.org/10.3390/ma15010174
  18. Liu, X., Nie, B. (2016). Fractal characteristics of coal samples utilizing image analysis and gas adsorption. Fuel, 182, 314–322. doi: https://doi.org/10.1016/j.fuel.2016.05.110
  19. Keboletse, K. P., Ntuli, F., Oladijo, O. P. (2021). Influence of coal properties on coal conversion processes-coal carbonization, carbon fiber production, gasification and liquefaction technologies: a review. International Journal of Coal Science & Technology, 8 (5), 817–843. doi: https://doi.org/10.1007/s40789-020-00401-5
  20. Talovskaya, A. V., Adil’bayeva, T. E., Yazikov, E. G. (2024). Monitoring For Elemental Composition Of Particulate Matter Deposited In Snow Cover Around Coal-Fired Thermal Power Plant (Karaganda, Central Kazakhstan). Geography, Environment, Sustainability, 16 (4), 180–192. doi: https://doi.org/10.24057/2071-9388-2023-2829
  21. Lipp, J., Banerjee, R., Patwary, Md. F., Patra, N., Dong, A., Girgsdies, F. et al. (2022). Extension of Rietveld Refinement for Benchtop Powder XRD Analysis of Ultrasmall Supported Nanoparticles. Chemistry of Materials, 34 (18), 8091–8111. doi: https://doi.org/10.1021/acs.chemmater.2c00101
  22. Sakher, E., Loudjani, N., Benchiheub, M., Bououdina, M. (2018). Influence of Milling Time on Structural and Microstructural Parameters of Ni50Ti50 Prepared by Mechanical Alloying Using Rietveld Analysis. Journal of Nanomaterials, 2018, 1–11. doi: https://doi.org/10.1155/2018/2560641
  23. Sakher, E., Smili, B., Bououdina, M., Bellucci, S. (2022). Structural Study of Nano-Clay and Its Effectiveness in Radiation Protection against X-rays. Nanomaterials, 12 (14), 2332. doi: https://doi.org/10.3390/nano12142332
  24. Pang, Z., Gu, X., Wei, Y., Yang, R., Dresselhaus, M. S. (2016). Bottom-up Design of Three-Dimensional Carbon-Honeycomb with Superb Specific Strength and High Thermal Conductivity. Nano Letters, 17 (1), 179–185. doi: https://doi.org/10.1021/acs.nanolett.6b03711
  25. Atsumi, H., Iseki, M., Shikama, T. (1994). Trapping and detrapping of hydrogen in carbon-based materials exposed to hydrogen gas. Journal of Nuclear Materials, 212-215, 1478–1482. doi: https://doi.org/10.1016/0022-3115(94)91073-1
  26. Burzo, E. (2009). Serpentines and related silicates: Phyllosilicates. Magnetic Properties of Non-Metallic Inorganic Compounds Based on Transition Elements, 211–234.
  27. Cui, Z., Zhang, Z., Huang, W., Liu, L., Wang, J., Wei, X., Shen, J. (2024). Pore–Fracture Structure Characteristics of Low-Medium Rank Coals from Eastern Surat Basin by FE-SEM and NMR Experiments. Natural Resources Research. doi: https://doi.org/10.1007/s11053-023-10304-2
  28. Chen, Y., Gao, N., Sha, G., Ringer, S. P., Starink, M. J. (2016). Microstructural evolution, strengthening and thermal stability of an ultrafine-grained Al–Cu–Mg alloy. Acta Materialia, 109, 202–212. doi: https://doi.org/10.1016/j.actamat.2016.02.050
  29. Slama, C., Jaafar, H., Karouia, A., Abdellaoui, M. (2021). Diffraction Crystallite Size Effects on Mechanical Properties of Nanocrystalline (Ti0.8W0.2)C. Chemistry Africa, 4 (4), 809–819. doi: https://doi.org/10.1007/s42250-021-00264-6
  30. Wang, Y., Bai, Y., Zou, L., Liu, Y., Li, F., Zhao, Q. (2022). Co-Combustion Characteristics And Ash Melting Behavior Of Sludge/High-Alkali Coal Blends. Combustion Science and Technology, 196 (2), 177–194. doi: https://doi.org/10.1080/00102202.2022.2065879
  31. Pardhi, E., Tomar, D. S., Khemchandani, R., Samanthula, G., Singh, P. K., Mehra, N. K. (2024). Design, development and characterization of the Apremilast and Indomethacin coamorphous system. Journal of Molecular Structure, 1299, 137045. doi: https://doi.org/10.1016/j.molstruc.2023.137045
  32. Liu, H., Xin, Z., Cao, B., Xu, Z., Xu, B., Zhu, Q. et al. (2023). Polyhydroxylated Organic Molecular Additives for Durable Aqueous Zinc Battery. Advanced Functional Materials, 34 (4). doi: https://doi.org/10.1002/adfm.202309840
  33. He, X., Liu, X., Nie, B., Song, D. (2017). FTIR and Raman spectroscopy characterization of functional groups in various rank coals. Fuel, 206, 555–563. doi: https://doi.org/10.1016/j.fuel.2017.05.101
  34. Morales-Verdejo, C., Schott, E., Zarate, X., Manriquez, J. M. (2014). Novel mono- and heterobimetallic chromium-nickel s-indacene complexes: synthesis, characterization, and DFT studies. Canadian Journal of Chemistry, 92 (7), 677–683. doi: https://doi.org/10.1139/cjc-2014-0126
  35. Ding, X. D., Wang, S. L., Rittby, C. M. L., Graham, W. R. M. (1999). Fourier-transform infrared observation of SiCn chains. I. The ν4(σ) mode of linear SiC9 in Ar at 10 K. The Journal of Chemical Physics, 110 (23), 11214–11220. doi: https://doi.org/10.1063/1.479062
  36. Ward, C. R. (2016). Analysis, origin and significance of mineral matter in coal: An updated review. International Journal of Coal Geology, 165, 1–27. doi: https://doi.org/10.1016/j.coal.2016.07.014
  37. Belskaya, O. B., Danilova, I. G., Kazakov, M. O., Mironenko, R. M., Lavrenov, A. V., Likholobov, V. A. (2013). ChemInform Abstract: FTIR Spectroscopy of Adsorbed Probe Molecules for Analyzing the Surface Properties of Supported Pt (Pd) Catalysts. ChemInform, 44 (51). doi: https://doi.org/10.1002/chin.201351237
  38. Zhang, Y., Wang, J., Xue, S., Wu, J., Chang, L., Li, Z. (2016). Kinetic study on changes in methyl and methylene groups during low-temperature oxidation of coal via in-situ FTIR. International Journal of Coal Geology, 154-155, 155–164. doi: https://doi.org/10.1016/j.coal.2016.01.002
  39. Sarvamangala, H., Raghavendra, V. B., Girisha, S. T. (2017). Biobenefication of oxide minerals from Bacillus subtilis Using FTIR and MALDI-TOF techniques. Journal of Environmental Protection, 8 (2), 194–205. doi: https://doi.org/10.4236/jep.2017.82015
  40. Yin, Yin, Wu, Qi, Tian, Zhang, Hu, Feng. (2019). Characterization of Coals and Coal Ashes with High Si Content Using Combined Second-Derivative Infrared Spectroscopy and Raman Spectroscopy. Crystals, 9 (10), 513. doi: https://doi.org/10.3390/cryst9100513
  41. Le, K. C., Lefumeux, C., Pino, T. (2017). Differential Raman backscattering cross sections of black carbon nanoparticles. Scientific Reports, 7 (1). doi: https://doi.org/10.1038/s41598-017-17300-6
  42. Nestler, K., Dietrich, D., Witke, K., Rößler, R., Marx, G. (2003). Thermogravimetric and Raman spectroscopic investigations on different coals in comparison to dispersed anthracite found in permineralized tree fern Psaronius sp. Journal of Molecular Structure, 661-662, 357–362. doi: https://doi.org/10.1016/j.molstruc.2003.09.020
Comprehensive physicochemical characterization of Algerian coal powders for the engineering of advanced sustainable materials

Downloads

Published

2024-02-29

How to Cite

Ferfar, M., Sakher, E., Bouras, A., Benselhoub, A., Hachemi, N., Massaoudi, M., Dovbash, N., & Bellucci, S. (2024). Comprehensive physicochemical characterization of Algerian coal powders for the engineering of advanced sustainable materials. Technology Audit and Production Reserves, 1(3(75), 29–36. https://doi.org/10.15587/2706-5448.2024.299270

Issue

Section

Chemical and Technological Systems