Comprehensive physicochemical characterization of Algerian coal powders for the engineering of advanced sustainable materials
DOI:
https://doi.org/10.15587/2706-5448.2024.299270Keywords:
coal, SEM, XRD, FTIR, RAMAN, environmental remediation, energy storage, sustainable energy solutionsAbstract
The object of the research is the intriguing and versatile material known as coal that attracted a lot of attention lately because of its potential use in a variety of fields, including cutting-edge building materials, environmental remediation methods, and creative energy storage solutions. This study presents an extensive characterization of Algerian natural coal powders, employing a multifaceted analytical approach that includes Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Raman Spectroscopy, to reveal their physicochemical properties including morphology, particle size distribution, crystalline structure, and functional groups.
The SEM analysis unveiled a heterogeneous morphology with a broad particle size distribution, indicative of the coal's complex structure. The XRD findings, refined using Rietveld analysis, distinguish Carbon (C) and Silicon Dioxide (SiO2) as the primary phases, with crystallite sizes measuring 18.7539 nm for C and 16.6291 nm for SiO2. These phases constitute 98.8 % and 12 % of the composition, respectively, while the presence of quartz underscores the coal’s geological background and its thermal resilience.
Regarding the results of the FTIR spectroscopy, absorption peaks corresponding to various functional groups are highlighted, suggesting a rich organic and inorganic composition. Raman spectroscopy corroborates the presence of disordered and graphitic carbon structures, emphasizing the coal's potential for diverse applications. These findings underline the significance of Algerian coal powders for environmental remediation, energy storage, and advanced construction materials, contributing to the advancement of sustainable energy solutions.
References
- Cui, B., Wu, B., Wang, M., Jin, X., Shen, Y., Chang, L. (2024). A preliminary study on the quality evaluation of coking coal from its structure thermal transformation: Applications of fluidity and swelling indices. Fuel, 355, 129418. doi: https://doi.org/10.1016/j.fuel.2023.129418
- Li, J., Shan, Y., Ni, P., Cui, J., Li, Y., Zhou, J. (2024). Mechanics, durability, and microstructure analysis of marine soil stabilized by an eco-friendly calcium carbide residue-activated coal gangue geopolymer. Case Studies in Construction Materials, 20, e02687. doi: https://doi.org/10.1016/j.cscm.2023.e02687
- Akimbekov, N. S., Digel, I., Tastambek, K. T., Marat, A. K., Turaliyeva, M. A., Kaiyrmanova, G. K. (2022). Biotechnology of Microorganisms from Coal Environments: From Environmental Remediation to Energy Production. Biology, 11 (9), 1306. doi: https://doi.org/10.3390/biology11091306
- Wu, F., Liu, Y., Gao, R. (2024). Challenges and opportunities of energy storage technology in abandoned coal mines: A systematic review. Journal of Energy Storage, 83, 110613. doi: https://doi.org/10.1016/j.est.2024.110613
- Zhao, T., Yao, Y., Wang, M., Chen, R., Yu, Y., Wu, F., Zhang, C. (2017). Preparation of MnO2-Modified Graphite Sorbents from Spent Li-Ion Batteries for the Treatment of Water Contaminated by Lead, Cadmium, and Silver. ACS Applied Materials & Interfaces, 9 (30), 25369–25376. doi: https://doi.org/10.1021/acsami.7b07882
- Cheng, Y., Jiang, H., Zhang, X., Cui, J., Song, C., Li, X. (2017). Effects of coal rank on physicochemical properties of coal and on methane adsorption. International Journal of Coal Science & Technology, 4 (2), 129–146. doi: https://doi.org/10.1007/s40789-017-0161-6
- Xu, Y., Huo, X., Wang, L., Gong, X., Lv, Z., Zhao, T. (2023). Study of the Microstructure of Coal at Different Temperatures and Quantitative Fractal Characterization. ACS Omega, 8 (25), 23098–23111. doi: https://doi.org/10.1021/acsomega.3c02480
- Zhang, N., Qi, S.-Y., Guo, Y.-F., Wang, P.-F., Ren, N., Yi, T.-F. (2023). Approaching high-performance lithium storage materials of CoNiO2 microspheres wrapped coal tar pitch-derived porous carbon. Dalton Transactions, 52 (25), 8704–8715. doi: https://doi.org/10.1039/d3dt01263h
- Dhara, A., Sain, S., Sadhukhan, P., Das, S., Pradhan, S. K. (2019). Effect of lattice distortion in optical properties of CeO2 nanocrystals on Mn substitution by mechanical alloying. Journal of Alloys and Compounds, 786, 215–224. doi: https://doi.org/10.1016/j.jallcom.2019.01.350
- Aggarwal, J., Habicht-Mauche, J., Juarez, C. (2008). Application of heavy stable isotopes in forensic isotope geochemistry: A review. Applied Geochemistry, 23 (9), 2658–2666. doi: https://doi.org/10.1016/j.apgeochem.2008.05.016
- Sakher, E., Loudjani, N., Benchiheub, M., Belkahla, S., Bououdina, M. (2017). Microstructure Characterization of Nanocrystalline Ni50Ti50 Alloy Prepared Via Mechanical Alloying Method Using the Rietveld Refinement Method Applied to the X-Ray Diffraction. Nanosistemi, Nanomateriali, Nanotehnologii, 15 (3), 401–416. doi: https://doi.org/10.15407/nnn.15.03.0401
- Yu, S., Bo, J., Ming, L., Chenliang, H., Shaochun, X. (2020). A review on pore-fractures in tectonically deformed coals. Fuel, 278, 118248. doi: https://doi.org/10.1016/j.fuel.2020.118248
- Al Biajawi, M. I., Embong, R., Muthusamy, K., Ismail, N., Obianyo, I. I. (2022). Recycled coal bottom ash as sustainable materials for cement replacement in cementitious Composites: A review. Construction and Building Materials, 338, 127624. doi: https://doi.org/10.1016/j.conbuildmat.2022.127624
- Xu, M., Yu, D., Yao, H., Liu, X., Qiao, Y. (2011). Coal combustion-generated aerosols: Formation and properties. Proceedings of the Combustion Institute, 33 (1), 1681–1697. doi: https://doi.org/10.1016/j.proci.2010.09.014
- Cai, L., Pan, X., Chen, X., Zhao, C. (2012). Flow characteristics and stability of dense-phase pneumatic conveying of pulverized coal under high pressure. Experimental Thermal and Fluid Science, 41, 149–157. doi: https://doi.org/10.1016/j.expthermflusci.2012.04.011
- Matjie, R. H., Li, Z., Ward, C. R., Bunt, J. R., Strydom, C. A. (2016). Determination of mineral matter and elemental composition of individual macerals in coals from Highveld mines. Journal of the Southern African Institute of Mining and Metallurgy, 116 (2). doi: https://doi.org/10.17159/2411-9717/2016/v116n2a8
- Zheng, H., Xu, R., Zhang, J., Daghagheleh, O., Schenk, J., Li, C., Wang, W. (2021). A Comprehensive Review of Characterization Methods for Metallurgical Coke Structures. Materials, 15 (1), 174. doi: https://doi.org/10.3390/ma15010174
- Liu, X., Nie, B. (2016). Fractal characteristics of coal samples utilizing image analysis and gas adsorption. Fuel, 182, 314–322. doi: https://doi.org/10.1016/j.fuel.2016.05.110
- Keboletse, K. P., Ntuli, F., Oladijo, O. P. (2021). Influence of coal properties on coal conversion processes-coal carbonization, carbon fiber production, gasification and liquefaction technologies: a review. International Journal of Coal Science & Technology, 8 (5), 817–843. doi: https://doi.org/10.1007/s40789-020-00401-5
- Talovskaya, A. V., Adil’bayeva, T. E., Yazikov, E. G. (2024). Monitoring For Elemental Composition Of Particulate Matter Deposited In Snow Cover Around Coal-Fired Thermal Power Plant (Karaganda, Central Kazakhstan). Geography, Environment, Sustainability, 16 (4), 180–192. doi: https://doi.org/10.24057/2071-9388-2023-2829
- Lipp, J., Banerjee, R., Patwary, Md. F., Patra, N., Dong, A., Girgsdies, F. et al. (2022). Extension of Rietveld Refinement for Benchtop Powder XRD Analysis of Ultrasmall Supported Nanoparticles. Chemistry of Materials, 34 (18), 8091–8111. doi: https://doi.org/10.1021/acs.chemmater.2c00101
- Sakher, E., Loudjani, N., Benchiheub, M., Bououdina, M. (2018). Influence of Milling Time on Structural and Microstructural Parameters of Ni50Ti50 Prepared by Mechanical Alloying Using Rietveld Analysis. Journal of Nanomaterials, 2018, 1–11. doi: https://doi.org/10.1155/2018/2560641
- Sakher, E., Smili, B., Bououdina, M., Bellucci, S. (2022). Structural Study of Nano-Clay and Its Effectiveness in Radiation Protection against X-rays. Nanomaterials, 12 (14), 2332. doi: https://doi.org/10.3390/nano12142332
- Pang, Z., Gu, X., Wei, Y., Yang, R., Dresselhaus, M. S. (2016). Bottom-up Design of Three-Dimensional Carbon-Honeycomb with Superb Specific Strength and High Thermal Conductivity. Nano Letters, 17 (1), 179–185. doi: https://doi.org/10.1021/acs.nanolett.6b03711
- Atsumi, H., Iseki, M., Shikama, T. (1994). Trapping and detrapping of hydrogen in carbon-based materials exposed to hydrogen gas. Journal of Nuclear Materials, 212-215, 1478–1482. doi: https://doi.org/10.1016/0022-3115(94)91073-1
- Burzo, E. (2009). Serpentines and related silicates: Phyllosilicates. Magnetic Properties of Non-Metallic Inorganic Compounds Based on Transition Elements, 211–234.
- Cui, Z., Zhang, Z., Huang, W., Liu, L., Wang, J., Wei, X., Shen, J. (2024). Pore–Fracture Structure Characteristics of Low-Medium Rank Coals from Eastern Surat Basin by FE-SEM and NMR Experiments. Natural Resources Research. doi: https://doi.org/10.1007/s11053-023-10304-2
- Chen, Y., Gao, N., Sha, G., Ringer, S. P., Starink, M. J. (2016). Microstructural evolution, strengthening and thermal stability of an ultrafine-grained Al–Cu–Mg alloy. Acta Materialia, 109, 202–212. doi: https://doi.org/10.1016/j.actamat.2016.02.050
- Slama, C., Jaafar, H., Karouia, A., Abdellaoui, M. (2021). Diffraction Crystallite Size Effects on Mechanical Properties of Nanocrystalline (Ti0.8W0.2)C. Chemistry Africa, 4 (4), 809–819. doi: https://doi.org/10.1007/s42250-021-00264-6
- Wang, Y., Bai, Y., Zou, L., Liu, Y., Li, F., Zhao, Q. (2022). Co-Combustion Characteristics And Ash Melting Behavior Of Sludge/High-Alkali Coal Blends. Combustion Science and Technology, 196 (2), 177–194. doi: https://doi.org/10.1080/00102202.2022.2065879
- Pardhi, E., Tomar, D. S., Khemchandani, R., Samanthula, G., Singh, P. K., Mehra, N. K. (2024). Design, development and characterization of the Apremilast and Indomethacin coamorphous system. Journal of Molecular Structure, 1299, 137045. doi: https://doi.org/10.1016/j.molstruc.2023.137045
- Liu, H., Xin, Z., Cao, B., Xu, Z., Xu, B., Zhu, Q. et al. (2023). Polyhydroxylated Organic Molecular Additives for Durable Aqueous Zinc Battery. Advanced Functional Materials, 34 (4). doi: https://doi.org/10.1002/adfm.202309840
- He, X., Liu, X., Nie, B., Song, D. (2017). FTIR and Raman spectroscopy characterization of functional groups in various rank coals. Fuel, 206, 555–563. doi: https://doi.org/10.1016/j.fuel.2017.05.101
- Morales-Verdejo, C., Schott, E., Zarate, X., Manriquez, J. M. (2014). Novel mono- and heterobimetallic chromium-nickel s-indacene complexes: synthesis, characterization, and DFT studies. Canadian Journal of Chemistry, 92 (7), 677–683. doi: https://doi.org/10.1139/cjc-2014-0126
- Ding, X. D., Wang, S. L., Rittby, C. M. L., Graham, W. R. M. (1999). Fourier-transform infrared observation of SiCn chains. I. The ν4(σ) mode of linear SiC9 in Ar at 10 K. The Journal of Chemical Physics, 110 (23), 11214–11220. doi: https://doi.org/10.1063/1.479062
- Ward, C. R. (2016). Analysis, origin and significance of mineral matter in coal: An updated review. International Journal of Coal Geology, 165, 1–27. doi: https://doi.org/10.1016/j.coal.2016.07.014
- Belskaya, O. B., Danilova, I. G., Kazakov, M. O., Mironenko, R. M., Lavrenov, A. V., Likholobov, V. A. (2013). ChemInform Abstract: FTIR Spectroscopy of Adsorbed Probe Molecules for Analyzing the Surface Properties of Supported Pt (Pd) Catalysts. ChemInform, 44 (51). doi: https://doi.org/10.1002/chin.201351237
- Zhang, Y., Wang, J., Xue, S., Wu, J., Chang, L., Li, Z. (2016). Kinetic study on changes in methyl and methylene groups during low-temperature oxidation of coal via in-situ FTIR. International Journal of Coal Geology, 154-155, 155–164. doi: https://doi.org/10.1016/j.coal.2016.01.002
- Sarvamangala, H., Raghavendra, V. B., Girisha, S. T. (2017). Biobenefication of oxide minerals from Bacillus subtilis Using FTIR and MALDI-TOF techniques. Journal of Environmental Protection, 8 (2), 194–205. doi: https://doi.org/10.4236/jep.2017.82015
- Yin, Yin, Wu, Qi, Tian, Zhang, Hu, Feng. (2019). Characterization of Coals and Coal Ashes with High Si Content Using Combined Second-Derivative Infrared Spectroscopy and Raman Spectroscopy. Crystals, 9 (10), 513. doi: https://doi.org/10.3390/cryst9100513
- Le, K. C., Lefumeux, C., Pino, T. (2017). Differential Raman backscattering cross sections of black carbon nanoparticles. Scientific Reports, 7 (1). doi: https://doi.org/10.1038/s41598-017-17300-6
- Nestler, K., Dietrich, D., Witke, K., Rößler, R., Marx, G. (2003). Thermogravimetric and Raman spectroscopic investigations on different coals in comparison to dispersed anthracite found in permineralized tree fern Psaronius sp. Journal of Molecular Structure, 661-662, 357–362. doi: https://doi.org/10.1016/j.molstruc.2003.09.020

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Meriem Ferfar, Elfahem Sakher, Amina Bouras, Aissa Benselhoub, Nadir Hachemi, Mohammed Massaoudi, Nadiia Dovbash, Stefano Bellucci

This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.