Study of the feasibility of valorizing phosphate ore by electrostatic separation

Authors

DOI:

https://doi.org/10.15587/2706-5448.2024.300766

Keywords:

electrostatic separation, triboelectric charge, phosphate ore, valorization, enrichment, magnesium carbonate

Abstract

The object of this research is the phosphate serves, as a fundamental and crucial raw material with diverse applications, primarily utilized in producing phosphoric acid and fertilizers. However, dolomitic impurities within the ore can greatly impede its effectiveness. Therefore, it is essential to minimize these impurities to the lowest feasible levels to mitigate their adverse effects. This ensures optimal performance and quality in various industries reliant on phosphate, promoting efficiency and sustainability in the production process. Through a comprehensive assessment, it becomes feasible to gauge the enrichment potential and propose viable methods to realize it. Among these methods, flotation stands out as one of the most effective for enhancing phosphate ore, despite its inherent drawbacks of costliness and environmental impact stemming from chemical reagents.

This study endeavors to investigate the feasibility of employing electrostatic separation as an alternative method for enriching phosphate ore sourced from the Tebessa region in Algeria. Such exploration aims to offer insights into potentially more sustainable and economically viable approaches to ore enrichment in the region of Bir Elater Wilaya of Tebessa. Tests were carried out using different types of electrostatic separators at the Angouleme site of the PPRIME Institute: a multifunctional metal-belt-type separator, a free-fall plate-electrodes-type separator and an electrostatic separator with coaxial wire – cylinder electrode system. The experimental findings demonstrate significant promise, indicating that electrostatic separation enhanced the P2O5 content from 25 % to 29 % in an untreated phosphate ore sample. Simultaneously, it efficiently eliminated 82.80 % of MgO, achieving a P2O5 recovery rate more than 80 % and a yield of 70 %. Consequently, employing this method proves effective in reducing the MgO content of the ore to below than 1 %, aligning with industrial standards for commercial phosphate products. This underscores the viability of electrostatic separation as a viable and efficient technique in phosphate ore processing, offering substantial improvements in both quality and yield.

 

Author Biographies

Nesrine Derrardjia, National Higher School of Engineering and Technology

Postgraduate Student

Department of Mining, Metallurgy and Materials Engineering

Djamel Nettour, National Higher School of Engineering and Technology

Associate Professor

Department of Mining, Metallurgy and Materials Engineering

LAVAMINE Laboratory

Mohamed Chettibi, Badji Mokhtar-Annaba University

Professor

Department of Mines

LAVAMINE Laboratory Sciences Earth Faculty

Rachid Chaib, Mentouri Brothers University Constantine1

Professor

Department of Mechanic Engineering

Laboratory of Transports and Environment Engineering

Thami Zeghloul, CNRS-University of Poitiers-ENSMA

Professor

PPRIME Institute

Lucien Dascalescu, CNRS-University of Poitiers-ENSMA

Professor

PPRIME Institute

Djillali Aouimeur, CNRS-University of Poitiers-ENSMA

PhD

PPRIME Institute

References

  1. Sobhy, A., Tao, D. (2014). Innovative RTS Technology for Dry Beneficiation of Phosphate. Procedia Engineering, 83, 111–121. doi: https://doi.org/10.1016/j.proeng.2014.09.020
  2. Salhi, R., Nettour, D., Chettibi, M., Gherbi, C., Benselhoub, A., Bellucci, S. (2023). Characterization of phosphate wastes of Djebel Onk mining complex for a sustainable environmental management. Technology Audit and Production Reserves, 3 (3 (71)), 11–19. doi: https://doi.org/10.15587/2706-5448.2023.278893
  3. Nettour, D., Chettibi, M., Bulut, G., Benselhoub, A. (2019). Beneficiation of phosphate sludge rejected from Djebel Onk plant (Algeria). Mining of Mineral Deposits, 13 (4), 84–90. doi: https://doi.org/10.33271/mining13.04.084
  4. Nettour, D., Chettibi, M., Bouhedja, A., Bulut, G. (2018). Determination of physicochemical parameters of Djebel Onk phosphate flotation (Algeria). Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4, 43–49. doi: https://doi.org/10.29202/nvngu/2018-4/8
  5. Bittnera, J. D., Gasiorowskia, S. A., Hracha, F. J., Guicherdb, H. (2015). Electrostatic beneficiation of phosphate ores: Review of past work and discussion of an improved separation system. Procedia Engineering, 1–11.
  6. Abouzeid, A.-Z. M. (2008). Physical and thermal treatment of phosphate ores – An overview. International Journal of Mineral Processing, 85 (4), 59–84. doi: https://doi.org/10.1016/j.minpro.2007.09.001
  7. Ren, J., Huang, Y., Yao, J., Zheng, S., Zhao, Y., Hou, Y. et al. (2023). The role of reactive phosphate species in the abatement of micropollutants by activated peroxymonosulfate in the treatment of phosphate-rich wastewater. Water Research, 243, 120341. doi: https://doi.org/10.1016/j.watres.2023.120341
  8. Ptáček, P. (2016). Apatites and their synthetic analogues: Synthesis, Structure, Properties and Applications. BoD-Books on Demand. doi: https://doi.org/10.5772/59882
  9. Nagoya, S., Nakamichi, S., Kawase, Y. (2019). Mechanisms of phosphate removal from aqueous solution by zero-valent iron: A novel kinetic model for electrostatic adsorption, surface complexation and precipitation of phosphate under oxic conditions. Separation and Purification Technology, 218, 120–129. doi: https://doi.org/10.1016/j.seppur.2019.02.042
  10. Zhengxing, G., Zhizhong, G. (1999). Development of new technology for beneficiation of florida dolomitic phosphate resources. Available at: https://fipr.floridapoly.edu/library-and-publications/publications/development-of-new-technology-for-beneficiation-of-florida-dolomitic-phosphate-resources.php
  11. Gu, Z., Peng, F. F. (2010). Dolomite Flotation of High MgO Phosphate Pebble Using Different Particle Size Feed. Beneficiation of Phosphate, Technology Advance and Adoption. SME Publication, 327–333.
  12. Feasby, D. (1890). Free-fall electrostatic separation of phosphate and calcite particles. Minerals Research Laboratory, Labs, 1869, 1890, 1985, 3021, 3038.
  13. Safhi, A. el M., Amar, H., El Berdai, Y., El Ghorfi, M., Taha, Y., Hakkou, R. et al. (2022). Characterizations and potential recovery pathways of phosphate mines waste rocks. Journal of Cleaner Production, 374, 134034. doi: https://doi.org/10.1016/j.jclepro.2022.134034
  14. Dascalescu, L., Zeghloul, T., Iuga, A. (2016). Electrostatic separation of metals and plastics from waste electrical and electronic equipment. WEEE Recycling. Elsevier, 75–106. doi: https://doi.org/10.1016/b978-0-12-803363-0.00004-3
  15. Messal, S., Zeghloul, T., Mekhalef Benhafssa, A., Dascalescu, L. (2017). Belt-Type Corona-Electrostatic Separator for the Recovery of Conductive and Nonconductive Products From Micronized Wastes. IEEE Transactions on Industry Applications, 53 (2), 1424–1430. doi: https://doi.org/10.1109/tia.2016.2622684
  16. Chang, J. S., Kelly, A. J., Crowley, J. M. (1995). Handbook of electrostatic processes. CRC Press, 780. doi: https://doi.org/10.1201/9781315214559
  17. Fuerstenau, M. C., Han, K. N. (Eds.). (2003). Principles of mineral processing. SME.
  18. Rapport des travaux de recherche du gisement de phosphate de Djebel Onk, Documentation libre de la Direction d’Etudes et de Développement (2019). SOMIPHOS, Djebel Onk, Tébessa, Algérie, Rapport inédit. Office DED.
  19. Chlahbi, S., Belem, T., Elghali, A., Rochdane, S., Zerouali, E., Inabi, O., Benzaazoua, M. (2023). Geological and Geomechanical Characterization of Phosphate Mine Waste Rock in View of Their Potential Civil Applications: A Case Study of the Benguerir Mine Site, Morocco. Minerals, 13 (10), 1291. doi: https://doi.org/10.3390/min13101291
  20. Amar, H., Benzaazoua, M., Elghali, A., Hakkou, R., Taha, Y. (2022). Waste rock reprocessing to enhance the sustainability of phosphate reserves: A critical review. Journal of Cleaner Production, 381, 135151. doi: https://doi.org/10.1016/j.jclepro.2022.135151
  21. Qian, K., Zhang, Y., Dong, Q., Shao, Y., Cheng, Z., Ju, J. et al. (2023). Enhancement of corrosion resistance and antibacterial properties of PEO coated AZ91D Mg alloy by copper- and phosphate-based sealing treatment. Corrosion Science, 219, 111218. doi: https://doi.org/10.1016/j.corsci.2023.111218
  22. Konadu-Amoah, B., Hu, R., Ndé-Tchoupé, A. I., Gwenzi, W., Noubactep, C. (2022). Metallic iron (Fe0)-based materials for aqueous phosphate removal: A critical review. Journal of Environmental Management, 315, 115157. doi: https://doi.org/10.1016/j.jenvman.2022.115157
  23. Šutka, A., Lapčinskis, L., He, D., Kim, H., Berry, J. D., Bai, J., Knite, M. et al. (2023). Engineering Polymer Interfaces: A Review toward Controlling Triboelectric Surface Charge. Advanced Materials Interfaces, 10 (26). doi: https://doi.org/10.1002/admi.202300323
  24. El Ghorfi, M., Inabi, O., Amar, H., Taha, Y., Elghali, A., Hakkou, R., Benzaazoua, M. (2024). Design and Implementation of Sampling Wells in Phosphate Mine Waste Rock Piles: Towards an Enhanced Composition Understanding and Sustainable Reclamation. Minerals, 14 (3), 286. doi: https://doi.org/10.3390/min14030286
  25. Nepfumbada, C., Tavengwa, N. T., Masindi, V., Foteinis, S., Chatzisymeon, E. (2023). Recovery of phosphate from municipal wastewater as calcium phosphate and its subsequent application for the treatment of acid mine drainage. Resources, Conservation and Recycling, 190, 106779. doi: https://doi.org/10.1016/j.resconrec.2022.106779
  26. El Bamiki, R., Séranne, M., Parat, F., Aubineau, J., Chellai, E. H., Marzoqi, M., Bodinier, J.-L. (2023). Post-phosphogenesis processes and the natural beneficiation of phosphates: Geochemical evidence from the Moroccan High Atlas phosphate-rich sediments. Chemical Geology, 631, 121523. doi: https://doi.org/10.1016/j.chemgeo.2023.121523
  27. Aarab, I., Derqaoui, M., Amari, K. E., Yaacoubi, A., Abidi, A., Etahiri, A., Baçaoui, A. (2022). Flotation Tendency Assessment Through DOE: Case of Low-Grade Moroccan Phosphate Ore. Mining, Metallurgy & Exploration, 39 (4), 1721–1741. doi: https://doi.org/10.1007/s42461-022-00647-4
  28. Wang, B., Zhou, Z., Xu, D., Wu, J., Yang, X., Zhang, Z., Yan, Z. (2022). A new enrichment method of medium–low grade phosphate ore with high silicon content. Minerals Engineering, 181, 107548. doi: https://doi.org/10.1016/j.mineng.2022.107548
  29. Li, W., Huang, Z., Wang, H., Liu, R., Ouyang, L., Shuai, S. et al. (2023). Froth flotation separation of phosphate ore using a novel hammer-like amidoxime surfactant. Separation and Purification Technology, 307, 122817. doi: https://doi.org/10.1016/j.seppur.2022.122817
  30. Xiao, J., Lu, T., Zhuang, Y., Jin, H. (2022). A Novel Process to Recover Gypsum from Phosphogypsum. Materials, 15 (5), 1944. doi: https://doi.org/10.3390/ma15051944
  31. El-bahi, A., Taha, Y., Ait-Khouia, Y., Hakkou, R., Benzaazoua, M. (2023). Advancing phosphate ore minerals separation with sustainable flotation reagents: An investigation into highly selective biobased depressants. Advances in Colloid and Interface Science, 317, 102921. doi: https://doi.org/10.1016/j.cis.2023.102921
  32. Cheng, S., Li, W., Han, Y., Sun, Y., Gao, P., Zhang, X. (2024). Recent process developments in beneficiation and metallurgy of rare earths: A review. Journal of Rare Earths, 42 (4), 629–642. doi: https://doi.org/10.1016/j.jre.2023.03.017
  33. Corchado-Albelo, J. L., Alagha, L. (2023). Studies on the Enrichment Feasibility of Rare Earth-Bearing Minerals in Mine Tailings. Minerals, 13 (3), 301. doi: https://doi.org/10.3390/min13030301
  34. Ao, X., Yuan, X., Chen, J., Wang, M., Dong, W. (2023). Effects of metallic ions on fine-grained phosphate-rock particle dispersion and aggregation. Journal of Dispersion Science and Technology, 1–11. doi: https://doi.org/10.1080/01932691.2023.2263539
Study of the feasibility of valorizing phosphate ore by electrostatic separation

Downloads

Published

2024-04-26

How to Cite

Derrardjia, N., Nettour, D., Chettibi, M., Chaib, R., Zeghloul, T., Dascalescu, L., & Aouimeur, D. (2024). Study of the feasibility of valorizing phosphate ore by electrostatic separation. Technology Audit and Production Reserves, 2(3(76), 20–26. https://doi.org/10.15587/2706-5448.2024.300766

Issue

Section

Chemical and Technological Systems