Contribution to the assessment of effect distances of atmospheric dispersion: case study

Authors

DOI:

https://doi.org/10.15587/2706-5448.2024.311355

Keywords:

environmental risks, spread of pollutants, atmospheric dispersion of storage tanks, safety, modeling, protection and prevention

Abstract

Storage tanks are vital to the oil industry, functioning as essential components in the operation of oil fields. However, their strategic importance is accompanied by significant environmental risks, particularly due to atmospheric dispersion events. These events, characterized by the release and spread of pollutants such as aerosols, gases, and dust into the atmosphere, can stem from both human activities and accidental releases. The consequences are often severe, leading to considerable human, material, and ecological damage. Atmospheric dispersion of pollutants has emerged as a major environmental concern, especially within industries where storage tanks are integral to operations. This concern is magnified by increasingly stringent regulatory frameworks. Industries, particularly those operating within classified facilities subject to environmental protection laws, are now mandated to thoroughly identify, analyze, and assess potential accidental risks associated with their operations. These regulations are designed to mitigate the adverse impacts of such incidents, and this forms the object of this study.

In this study, we concentrated on the T-403A/B/C storage spheres at the ALRAR gas complex. Utilizing dynamic consequence modelling with ALOHA software, it was possible to conduct a comprehensive assessment of potential pollutant releases in the processing area. This approach allowed to meticulously map out the hazardous phenomena linked to these scenarios and to develop targeted preventive and protective measures. The findings from this study highlight the critical need for rigorous risk assessments and the implementation of proactive safety strategies. By doing so, the environmental and operational risks associated with storage tanks in the oil industry can be significantly reduced. This research underscores the imperative of integrating advanced modelling techniques and stringent safety protocols to safeguard both the environment and industry operations.

Author Biographies

Dalila Belaid, Mentouri Brothers University Constantine1

PhD

Department of Transportation Engineering

Laboratory of Transports and Environment Engineering

Rachid Chaib, Mentouri Brothers University Constantine1

Professor

Department of Transportation Engineering

Laboratory of Transports and Environment Engineering

Djamel Nettour, National Higher School of Engineering and Technology

Associate Professor

Department of Mining, Metallurgy and Materials Engineering

Laboratory of Resources Valorization and Environment (LAVAMINE)

Samira Belhour, Mentouri Brothers University Constantine1

PhD

Department of Transportation Engineering

Laboratory of Transports and Environment Engineering

References

  1. Pipal, A. S., Dubey, S., Singh, S. P., Taneja, A. (2022). Geographical Distribution and Transport of Atmospheric Particulate Matter. Airborne Particulate Matter: Source, Chemistry and Health. Singapore: Springer Nature Singapore, 29–46. https://doi.org/10.1007/978-981-16-5387-2_3
  2. Krishnan, M. A., Krishnaswami, P., Selvam, M. R. P., Dass, V. A., Thangavel, R., Subramanian, S. (2022). Transport of Particulate Matter Due to Meteorological Changes Analyzed by HYSPLIT. Revista de Chimie, 73 (4), 9–20. https://doi.org/10.37358/rc.22.4.8542
  3. Mukherjee, A., Agrawal, M. (2018). Assessment of local and distant sources of urban PM2.5 in middle Indo-Gangetic plain of India using statistical modeling. Atmospheric Research, 213, 275–287. https://doi.org/10.1016/j.atmosres.2018.06.014
  4. Yang, J., Hashemi, S., Kim, T., Park, J., Park, M., Han, W., Park, D., Lim, Y. (2023). Risk assessment and estimation of controlling safe distance for exposure to particulate matter from outdoor secondhand tobacco smoke. Air Quality, Atmosphere & Health, 17 (1), 139–154. https://doi.org/10.1007/s11869-023-01435-9
  5. Saha, S., Bhattacharjee, S., Bera, B., Haque, E. (2024). Drivers of High Concentration and Dispersal of PM10 and PM2.5 in the Eastern Part of Chhota Nagpur Plateau, India, Investigated Through HYSPLIT Model and Improvement of Environmental Health Quality. Environmental Quality Management, 34 (1). https://doi.org/10.1002/tqem.22299
  6. Snoun, H., Krichen, M., Chérif, H. (2023). A comprehensive review of Gaussian atmospheric dispersion models: current usage and future perspectives. Euro-Mediterranean Journal for Environmental Integration, 8 (1), 219–242. https://doi.org/10.1007/s41207-023-00354-6
  7. Bedwell, P., Wellings, J., Leadbetter, S., Tomas, J., Andronopoulos, S., Korsakissok, I., Szántó, P. (2018). Guidelines detailing the range and distribution of atmospheric dispersion model input parameter uncertainties. Guidelines ranking uncertainties for atmospheric dispersion. European joint programme for the integration of radiation protection research.
  8. Pakharukova, V. P., Kharchenko, N. A., Stonkus, O. A., Saraev, A. A., Gorlova, A. M., Rogozhnikov, V. N., Potemkin, D. I. (2024). The effect of calcination gas atmosphere on the structural organization of Ru/Ce0.75Zr0.25O2 catalysts for CO2 methanation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 702, 134962. https://doi.org/10.1016/j.colsurfa.2024.134962
  9. Gräf, T., Martinez, A. A., Bello, G., Dellicour, S., Lemey, P., Colizza, V. et al. (2024). Dispersion patterns of SARS-CoV-2 variants Gamma, Lambda and Mu in Latin America and the Caribbean. Nature Communications, 15 (1). https://doi.org/10.1038/s41467-024-46143-9
  10. Hellas, M. S., Rachid, C., Verzea, I. (2021). Modelling of accidental phenomena related to leakage and tank rupture of a vehicle converted to LPG. World Journal of Engineering, 18 (3), 505–518. https://doi.org/10.1108/wje-03-2020-0083
  11. Oh, S., Lee, J., Ma, B. (2024). Methodology for optimally designing hydrogen refueling station barriers using RSM and ANN: Considering explosion and jet fire. International Journal of Hydrogen Energy, 80, 234–248. https://doi.org/10.1016/j.ijhydene.2024.06.392
  12. Micallef, A., Micallef, C. (2024). The Gaussian Plume Model Equation for Atmospheric Dispersion Corrected for Multiple Reflections at Parallel Boundaries: A Mathematical Rewriting of the Model and Some Numerical Testing. Sci, 6 (3), 48. https://doi.org/10.3390/sci6030048
  13. Abdi, M., Chaib, R., Verzea, I. (2020). Contribution To the Occupational Risk Assessment For Sustainable Management In Health And Safety At Work: Case Study. Acta Technica Napocensis. Series: Applied Mathematics, Mechanics, and Engineerin, 63 (IV). Available at: https://atna-mam.utcluj.ro/index.php/Acta/article/view/1423
  14. Gkirmpas, P., Tsegas, G., Ioannidis, G., Vlachokostas, C., Moussiopoulos, N. (2024). Identification of an Unknown Stationary Emission Source in Urban Geometry Using Bayesian Inference. Atmosphere, 15 (8), 871. https://doi.org/10.3390/atmos15080871
  15. Hassani, M., Chaib, R., Bouzerara, R. (2020). Vulnerability Assessment for Major Industrial Risks Proposal for a Semiquantitative Analysis Method (VAMIR) Application: Oil and Gas Industry. Journal of Failure Analysis and Prevention, 20 (5), 1568–1582. https://doi.org/10.1007/s11668-020-00960-4
  16. Sarsangi, V., Karimi, A., Hadavandi, E., Hokmabadi, R. (2023). Prioritizing risk factors of hazardous material road transportation accidents using the fuzzy AHP method. Work, 75 (1), 275–286. https://doi.org/10.3233/wor-211446
  17. Tronnebati, I., Jawab, F., Frichi, Y., Arif, J. (2024). Green Supplier Selection Using Fuzzy AHP, Fuzzy TOSIS, and Fuzzy WASPAS: A Case Study of the Moroccan Automotive Industry. Sustainability, 16 (11), 4580. https://doi.org/10.3390/su16114580
  18. Khalil, S., Modibbo, U. M., Raina, A. A., Ali, I. (2023). A personnel selection problem in healthcare system using fuzzy-TOPSIS approach. Journal of Nonlinear Modeling & Analysis, 5 (2), 311–324. https://doi.org/10.12150/jnma.2023.311
  19. Nadira, M., Rachid, C., Mohamed, B. (2021). Risk Assessment Using Fuzzy Ahp and Fuzzy Top-Sis Hybrid Approach for Safe and Sustainable Work, Case Study. Acta Technica Napocensis. Series: Applied Mathematics, Mechanics, and Engineering, 64 (I).
  20. Tubis, A., Werbińska-Wojciechowska, S. (2023). Fuzzy TOPSIS in selecting logistic handling operator: case study from Poland. Transport, 38 (1), 12–30.
  21. Abdelaal, R. M. S., Makki, A. A., Al-Madi, E. M., Qhadi, A. M. (2024). Prioritizing Strategic Objectives and Projects in Higher Education Institutions: A New Hybrid Fuzzy MEREC-G-TOPSIS Approach. IEEE Access, 12, 89735–89753. https://doi.org/10.1109/access.2024.3419701
  22. Wang, C.-N., Thi-Be-Oanh-Cao, Dang, T.-T., Nguyen, N.-A.-T. (2024). Third-Party Logistics Provider Selection in the Industry 4.0 Era by Using a Fuzzy AHP and Fuzzy MARCOS Methodology. IEEE Access, 12, 67291–67313. https://doi.org/10.1109/access.2024.3392892
  23. Bouzerara, R., Chaib, R., Verzea, I. (2022). Contribution to the analysis of the impact of hazardous chemicals on employee health case study: company SARL EL CHAFEK (Algeria). Ukrainian Journal of Ecology, 12 (1), 54–58.
  24. Ukandu, C. P., Emoghene, O. B., Boye, E. T. (2023). Occupational Hazards Identification, Risk Evaluation and Mitigation in Contemporary Nigeria Society: The Application of Artificial Intelligence (AI). International Journal of Research and Innovation in Social Science, VII (XI), 1344–1356. https://doi.org/10.47772/ijriss.2023.7011104
  25. Quaigrain, R. A., Owusu-Manu, D.-G., Edwards, D. J., Hammond, M., Hammond, M., Martek, I. (2022). Occupational health and safety orientation in the oil and gas industry of Ghana: analysis of knowledge and attitudinal influences on compliance. Journal of Engineering, Design and Technology, 22 (3), 795–812. https://doi.org/10.1108/jedt-11-2021-0664
  26. Ait Ouffroukh, L., Chaib, R., Verzea, I. (2019). Study of the Conformity and Dimensioning of an Anti-Fire Network in a Hydrocarbon Depot. RECENT – REzultatele CErcetărilor Noastre Tehnice, 20 (2), 56–63. https://doi.org/10.31926/recent.2019.58.056
  27. Kireeva, E. V., Kireev, M. S. (2017). Risk-oriented approach to design of the industrial safety system: problems, solutions. International Journal of Applied Engineering Research, 12 (16), 5463–5471.
  28. Reznikov, D. O., Makhutov, N. A., Yudina, O. N. (2020). Management of risks induced by hazardous industrial facilities. Procedia Structural Integrity, 28, 1360–1368. https://doi.org/10.1016/j.prostr.2020.10.107
  29. Salin, A., Ponikarov, A. (2023). Analysis of accidents at the facilities of main pipeline transport and oil production. E3S Web of Conferences, 417, 04004. https://doi.org/10.1051/e3sconf/202341704004
  30. Mouaadh, H., Chaib, R., Bouzerara, R. (2018). Reduction of the Vulnerability Zone of a Major Industrial Risk. Case of BLEVE in LPG Storage Sphere Hassi R’Mel, Algeria. RECENT – REzultatele CErcetărilor Noastre Tehnice, 19 (2), 97–107. https://doi.org/10.31926/recent.2018.55.097
  31. Li, X., Song, J., Yang, L., Li, H., Fang, S. (2024). Source term inversion coupling Kernel Principal Component Analysis, Whale Optimization Algorithm, and Backpropagation Neural Networks (KPCA-WOA-BPNN) for complex dispersion scenarios. Progress in Nuclear Energy, 171, 105171. https://doi.org/10.1016/j.pnucene.2024.105171
  32. Zotov, M., Ponikarova, A. (2023). Accident analysis at oil refining and gas consumption facilities. E3S Web of Conferences, 417, 04002. https://doi.org/10.1051/e3sconf/202341704002
  33. Kahoul, H., Chaib, R., Verzea, I., Belhour, S. (2021). Impact of Industrial Activities on the environment. Case study: ALEMO Company, Algeria. Acta Technica Napocensis. Series: Applied Mathematics, Mechanics, and Engineering, 64 (2).
  34. Khademi, H., Gabarrón, M., Abbaspour, A., Martínez-Martínez, S., Faz, A., Acosta, J. A. (2019). Environmental impact assessment of industrial activities on heavy metals distribution in street dust and soil. Chemosphere, 217, 695–705. https://doi.org/10.1016/j.chemosphere.2018.11.045
  35. Long, Z., Huang, Y., Zhang, W., Shi, Z., Yu, D., Chen, Y., Liu, C., Wang, R. (2021). Effect of different industrial activities on soil heavy metal pollution, ecological risk, and health risk. Environmental Monitoring and Assessment, 193 (1). https://doi.org/10.1007/s10661-020-08807-z
  36. Etude Des Distances D'effets (Explosion, Thermique, Toxique) Des Principaux Scenarios Majorants D'unite D'epuration De Biogaz Et D'injection De Biomethane (2014). INERIS, DRA-14-133344-01580B; RAPPORT D’ÉTUDE 07/10/2014.
  37. Falakdin, P., Terzaghi, E., Di Guardo, A. (2022). Spatially resolved environmental fate models: A review. Chemosphere, 290, 133394. https://doi.org/10.1016/j.chemosphere.2021.133394
  38. Messadh, A. (2016). Modélisation de la dispersion atmosphérique dans le cas de la défaillance d’un ballon de séparation haute pression: Cas de SONATRACH DP ; Mémoire Master de l’École Nationale Polytechnique. Filière QHSE-GRI, soutenue le 21/06/2016.
  39. Sanchez, E. Y., Colman Lerner, J. E., Porta, A., Jacovkis, P. M. (2013). Emergencies planning and response: Coupling an exposure model with different atmospheric dispersion models. Atmospheric Environment, 79, 486–494. https://doi.org/10.1016/j.atmosenv.2013.07.013
  40. Rouïl, L., Tognet, F., Meleux, F., Colette, A., Leroy, G., Truchot, B. (2021). Dispersion and impact of smoke plumes from industrial fires: the case of Lubrizol. Environnement Risques Santé, 20 (2), 126–133. https://doi.org/10.1684/ers.2021.1540
  41. Calabrese, M., Portarapillo, M., Di Nardo, A., Venezia, V., Turco, M., Luciani, G., Di Benedetto, A. (2024). Hydrogen Safety Challenges: A Comprehensive Review on Production, Storage, Transport, Utilization, and CFD-Based Consequence and Risk Assessment. Energies, 17 (6), 1350. https://doi.org/10.3390/en17061350
  42. Yang, J., Shi, B., Shi, Y., Marvin, S., Zheng, Y., Xia, G. (2020). Air pollution dispersal in high density urban areas: Research on the triadic relation of wind, air pollution, and urban form. Sustainable Cities and Society, 54, 101941. https://doi.org/10.1016/j.scs.2019.101941
  43. Setti, L., Passarini, F., De Gennaro, G., Barbieri, P., Perrone, M. G., Borelli, M. et al. (2020). Airborne Transmission Route of COVID-19: Why 2 Meters/6 Feet of Inter-Personal Distance Could Not Be Enough. International Journal of Environmental Research and Public Health, 17 (8), 2932. https://doi.org/10.3390/ijerph17082932
  44. Abriha-Molnár, V. É., Szabó, S., Magura, T., Tóthmérész, B., Abriha, D., Sipos, B., Simon, E. (2024). Environmental impact assessment based on particulate matter, and chlorophyll content of urban trees. Scientific Reports, 14 (1). https://doi.org/10.1038/s41598-024-70664-4
  45. Cioclea, D., Radu, S. M., Cămărășescu, A., Matei, A., Drăgoescu, R. (2024). CFD Simulation of Carbon Dioxide Dispersion Dynamics in Closed Spaces. Mining Revue, 30 (1), 72–77. https://doi.org/10.2478/minrv-2024-0008
  46. Chen, L., Zong, Y., Lu, T., Zhang, L., Cai, Z., Chen, C. (2024). A detailed simulation study on radionuclide dispersion under spent fuel road transportation conditions: Effects of vessel type and coniferous vegetation growth. Journal of Hazardous Materials, 480, 135397. https://doi.org/10.1016/j.jhazmat.2024.135397
  47. Pagnon, S. (2012). Stratégies de modélisation des conséquences d’une dispersion atmosphérique de gaz toxique ou inflammable en situation d’urgence au regard de l’incertitude sur les données d’entrée.. Autre. Ecole Nationale Supérieure des Mines de Saint-Etienne. Français. (NNT: 2012EMSE0671).
  48. Fulker, M. J., Singh, S. (2024). The role of wind tunnel dispersion measurements in critical group dose assessments for new plant. WIT Transactions on Ecology and the Environment, 4.
  49. Touahar, B. (2013). Modelisation et Simulation Numerique pour la Dispersion Atmospherique De Polluant Application des logiciels: ALOHA, PHAST. Université de Batna.
Contribution to the assessment of effect distances of atmospheric dispersion: case study

Downloads

Published

2024-10-18

How to Cite

Belaid, D. ., Chaib, R., Nettour, D., & Belhour, S. . (2024). Contribution to the assessment of effect distances of atmospheric dispersion: case study. Technology Audit and Production Reserves, 5(3(79), 18–24. https://doi.org/10.15587/2706-5448.2024.311355

Issue

Section

Ecology and Environmental Technology