Assessing the potential of artificial intelligence and machine learning for thermal management in electronic devices

Authors

DOI:

https://doi.org/10.15587/2706-5448.2025.323117

Keywords:

artificial intelligence (AI), machine learning (ML), thermal management, semiconductor thermal dissipation, predictive modelling, energy-efficient computing

Abstract

The object of this study is the potential of artificial intelligence (AI) and machine learning (ML) techniques for thermal management in electronic devices. One of the most problematic aspects identified is the challenge of ensuring performance, reliability, and energy efficiency across diverse systems, including semiconductors, data centers, and consumer electronics. In the course of the research, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology was used to systematically analyze 150 studies. These studies employed various approaches, such as predictive modeling, optimization algorithms, and real-time control systems.

Our findings indicate that AI-driven thermal management can reduce energy consumption by up to 81.81 %, depending on the cooling method and optimization. Reinforcement learning-based HVAC control achieves 17.4 % energy savings, while ML-driven power management in manycore systems reduces energy use by 30 % and lowers peak chip temperatures by 17 °C. Neural network-based thermal forecasting achieves <1 % error, improving prediction accuracy. Additionally, LSTM models for thermal prognosis achieve a 3.45 % relative prediction error, outperforming traditional regression methods.

These results highlight the potential of AI in optimizing thermal behavior across data centers, smart buildings, and manycore chip architectures. Key limitations were also identified, including limited data availability, challenges in model interpretability, and integration with legacy systems. The study provides a roadmap for scalable AI-driven thermal management. Emerging trends such as physics-informed ML models and the integration of cooling technologies promise innovation. Compared to conventional methods, these advancements deliver clear benefits in sustainability and adaptability.

Author Biographies

Oleh Yatskiv, Ivan Franko National University of Lviv

PhD Student

Department of System Design

Bohdan Koman, Ivan Franko National University of Lviv

Doctor of Sciences in Physics and Mathematics, Professor

Department of System Design

References

  1. Wang, Y., Gao, Q., Wang, G., Lu, P., Zhao, M., Bao, W. (2018). A review on research status and key technologies of battery thermal management and its enhanced safety. International Journal of Energy Research, 42 (13), 4008–4033. https://doi.org/10.1002/er.4158
  2. Fan, S., Duan, F. (2020). A review of two-phase submerged boiling in thermal management of electronic cooling. International Journal of Heat and Mass Transfer, 150, 119324. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119324
  3. Feng, C.-P., Chen, L.-B., Tian, G.-L., Wan, S.-S., Bai, L., Bao, R.-Y. et al. (2019). Multifunctional Thermal Management Materials with Excellent Heat Dissipation and Generation Capability for Future Electronics. ACS Applied Materials & Interfaces, 11 (20), 18739–18745. https://doi.org/10.1021/acsami.9b03885
  4. Zhang, N. (2024). Diagnosis and Prevention of Overheating Failures in Mechanical Equipment Based on Numerical Analysis of Temperature and Thermal Stress Fields. International Journal of Heat and Technology, 42 (2), 466–474. https://doi.org/10.18280/ijht.420212
  5. Hu, R., Liu, Y., Shin, S., Huang, S., Ren, X., Shu, W. et al. (2020). Emerging Materials and Strategies for Personal Thermal Management. Advanced Energy Materials, 10 (17). https://doi.org/10.1002/aenm.201903921
  6. Khosla, R., Miranda, N. D., Trotter, P. A., Mazzone, A., Renaldi, R., McElroy, C. et al. (2020). Cooling for sustainable development. Nature Sustainability, 4 (3), 201–208. https://doi.org/10.1038/s41893-020-00627-w
  7. Syu, J.-H., Lin, J. C.-W., Srivastava, G., Yu, K. (2023). A Comprehensive Survey on Artificial Intelligence Empowered Edge Computing on Consumer Electronics. IEEE Transactions on Consumer Electronics, 69 (4), 1023–1034. https://doi.org/10.1109/tce.2023.3318150
  8. Nazir, K., Memon, S. A., Saurbayeva, A. (2024). A novel framework for developing a machine learning-based forecasting model using multi-stage sensitivity analysis to predict the energy consumption of PCM-integrated building. Applied Energy, 376, 124180. https://doi.org/10.1016/j.apenergy.2024.124180
  9. Mathew, J., Krishnan, S. (2021). A Review on Transient Thermal Management of Electronic Devices. Journal of Electronic Packaging, 144 (1). https://doi.org/10.1115/1.4050002
  10. He, Z., Yan, Y., Zhang, Z. (2021). Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review. Energy, 216, 119223. https://doi.org/10.1016/j.energy.2020.119223
  11. Kucova, T., Prauzek, M., Konecny, J., Andriukaitis, D., Zilys, M., Martinek, R. (2023). Thermoelectric energy harvesting for internet of things devices using machine learning: A review. CAAI Transactions on Intelligence Technology, 8 (3), 680–700. https://doi.org/10.1049/cit2.12259
  12. Chuttar, A., Thyagarajan, A., Banerjee, D. (2021). Leveraging Machine Learning (Artificial Neural Networks) for Enhancing Performance and Reliability of Thermal Energy Storage Platforms Utilizing Phase Change Materials. Journal of Energy Resources Technology, 144 (2). https://doi.org/10.1115/1.4051048
  13. Tang, X., Guo, Q., Li, M., Wei, C., Pan, Z., Wang, Y. (2021). Performance analysis on liquid-cooled battery thermal management for electric vehicles based on machine learning. Journal of Power Sources, 494, 229727. https://doi.org/10.1016/j.jpowsour.2021.229727
  14. Putrada, A. G., Abdurohman, M., Perdana, D., Nuha, H. H. (2022). Machine Learning Methods in Smart Lighting Toward Achieving User Comfort: A Survey. IEEE Access, 10, 45137–45178. https://doi.org/10.1109/access.2022.3169765
  15. Rane, N., Choudhary, S., Rane, J. (2023). Enhancing thermal comfort through leading-edge design, monitoring, and optimization technologies: A review. Sustainable and Clean Buildings, 1 (1), 123–146. https://doi.org/10.2139/ssrn.4642529
  16. Panduman, Y. Y. F., Funabiki, N., Fajrianti, E. D., Fang, S., Sukaridhoto, S. (2024). A Survey of AI Techniques in IoT Applications with Use Case Investigations in the Smart Environmental Monitoring and Analytics in Real-Time IoT Platform. Information, 15 (3), 153. https://doi.org/10.3390/info15030153
  17. Khan, S. A., Eze, C., Dong, K., Shahid, A. R., Patil, M. S., Ahmad, S. et al. (2022). Design of a new optimized U-shaped lightweight liquid-cooled battery thermal management system for electric vehicles: A machine learning approach. International Communications in Heat and Mass Transfer, 136, 106209. https://doi.org/10.1016/j.icheatmasstransfer.2022.106209
  18. Zhou, Y., Zheng, S., Zhang, G. (2020). A review on cooling performance enhancement for phase change materials integrated systems – flexible design and smart control with machine learning applications. Building and Environment, 174, 106786. https://doi.org/10.1016/j.buildenv.2020.106786
  19. Rabienataj Darzi, A. A., Mousavi, S. M., Razbin, M., Li, M. (2024). Utilizing neural networks and genetic algorithms in AI-assisted CFD for optimizing PCM-based thermal energy storage units with extended surfaces. Thermal Science and Engineering Progress, 54, 102795. https://doi.org/10.1016/j.tsep.2024.102795
  20. Xin, X., Zhang, Z., Zhou, Y., Liu, Y., Wang, D., Nan, S. (2024). A comprehensive review of predictive control strategies in heating, ventilation, and air-conditioning (HVAC): Model-free VS model. Journal of Building Engineering, 94, 110013. https://doi.org/10.1016/j.jobe.2024.110013
  21. Suryawanshi, H. A. (2024). Predictions of thermal behavior of power electronics components with neural networks. [PhD thesis; Technische Hochschule Ingolstadt].
  22. Pei, Q., Chen, S., Zhang, Q., Zhu, X., Liu, F., Jia, Z. et al. (2022). CoolEdge: hotspot-relievable warm water cooling for energy-efficient edge datacenters. Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, 814–829. https://doi.org/10.1145/3503222.3507713
  23. Antal, M., Cioara, T., Anghel, I., Gorzenski, R., Januszewski, R., Oleksiak, A. et al. (2019). Reuse of Data Center Waste Heat in Nearby Neighborhoods: A Neural Networks-Based Prediction Model. Energies, 12 (5), 814. https://doi.org/10.3390/en12050814
  24. Sohel Murshed, S. M., Nieto de Castro, C. A. (2017). A critical review of traditional and emerging techniques and fluids for electronics cooling. Renewable and Sustainable Energy Reviews, 78, 821–833. https://doi.org/10.1016/j.rser.2017.04.112
  25. Chakraborty, S., Shukla, D., Kumar Panigrahi, P. (2024). A review on coolant selection for thermal management of electronics and implementation of multiple-criteria decision-making approach. Applied Thermal Engineering, 245, 122807. https://doi.org/10.1016/j.applthermaleng.2024.122807
  26. Schreiber, T., Netsch, C., Eschweiler, S., Wang, T., Storek, T., Baranski, M., Müller, D. (2021). Application of data-driven methods for energy system modelling demonstrated on an adaptive cooling supply system. Energy, 230, 120894. https://doi.org/10.1016/j.energy.2021.120894
  27. Guo, C. Y., Muhieldeen, M. W., Teng, K. H., Ang, C. K., Lim, W. H. (2024). A novel thermal management system for lithium-ion battery modules combining indirect liquid-cooling with forced air-cooling: Deep learning approach. Journal of Energy Storage, 94, 112434. https://doi.org/10.1016/j.est.2024.112434
  28. Pagani, S., Manoj, P. D. S., Jantsch, A., Henkel, J. (2020). Machine Learning for Power, Energy, and Thermal Management on Multicore Processors: A Survey. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 39 (1), 101–116. https://doi.org/10.1109/tcad.2018.2878168
  29. Ilager, S., Buyya, R. (2021). Energy and thermal-aware resource management of cloud data centres: A taxonomy and future directions. arXiv preprint arXiv:2107.02342
  30. He, Z., Guo, W., Zhang, P. (2022). Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods. Renewable and Sustainable Energy Reviews, 156, 111977. https://doi.org/10.1016/j.rser.2021.111977
  31. Chuttar, A., Banerjee, D. (2021). Machine Learning (ML) Based Thermal Management for Cooling of Electronics Chips by Utilizing Thermal Energy Storage (TES) in Packaging That Leverages Phase Change Materials (PCM). Electronics, 10 (22), 2785. https://doi.org/10.3390/electronics10222785
  32. Amiraski, M., Werner, D., Hankin, A., Sebot, J., Vaidyanathan, K., Hempstead, M. (2023). Boreas: A Cost-Effective Mitigation Method for Advanced Hotspots using Machine Learning and Hardware Telemetry. 2023 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), 295–305. https://doi.org/10.1109/ispass57527.2023.00036
  33. Okulu, D., Selimefendigil, F., Öztop, H. F. (2022). Review on nanofluids and machine learning applications for thermoelectric energy conversion in renewable energy systems. Engineering Analysis with Boundary Elements, 144, 221–261. https://doi.org/10.1016/j.enganabound.2022.08.004
  34. Blad, C., Bøgh, S., Kallesøe, C. S. (2022). Data-driven Offline Reinforcement Learning for HVAC-systems. Energy, 261, 125290. https://doi.org/10.1016/j.energy.2022.125290
  35. Correa-Jullian, C., Cardemil, J. M., López Droguett, E., Behzad, M. (2020). Assessment of Deep Learning techniques for Prognosis of solar thermal systems. Renewable Energy, 145, 2178–2191. https://doi.org/10.1016/j.renene.2019.07.100
  36. Patel, N., Krishnamurthy, P., Amrouch, H., Henkel, J., Shamouilian, M., Karri, R., Khorrami, F. (2022). Towards a New Thermal Monitoring Based Framework for Embedded CPS Device Security. IEEE Transactions on Dependable and Secure Computing, 19 (1), 524–536. https://doi.org/10.1109/tdsc.2020.2973959
  37. Zhang, Q., Meng, Z., Hong, X., Zhan, Y., Liu, J., Dong, J. et al. (2021). A survey on data center cooling systems: Technology, power consumption modeling and control strategy optimization. Journal of Systems Architecture, 119, 102253. https://doi.org/10.1016/j.sysarc.2021.102253
  38. Chen, W.-Y., Shi, X.-L., Zou, J., Chen, Z.-G. (2022). Thermoelectric coolers for on-chip thermal management: Materials, design, and optimization. Materials Science and Engineering: R: Reports, 151, 100700. https://doi.org/10.1016/j.mser.2022.100700
  39. Habibi Khalaj, A., Halgamuge, S. K. (2017). A Review on efficient thermal management of air- and liquid-cooled data centers: From chip to the cooling system. Applied Energy, 205, 1165–1188. https://doi.org/10.1016/j.apenergy.2017.08.037
  40. Hannan, M. A., Lipu, M. S. H., Ker, P. J., Begum, R. A., Agelidis, V. G., Blaabjerg, F. (2019). Power electronics contribution to renewable energy conversion addressing emission reduction: Applications, issues, and recommendations. Applied Energy, 251, 113404. https://doi.org/10.1016/j.apenergy.2019.113404
  41. Alzoubi, Y. I., Mishra, A. (2024). Green artificial intelligence initiatives: Potentials and challenges. Journal of Cleaner Production, 468, 143090. https://doi.org/10.1016/j.jclepro.2024.143090
  42. Yahia, H. S., Zeebaree, S. R. M., Sadeeq, M. A. M., Salim, N. O. M., Kak, S. F., AL-Zebari, A. et al. (2021). Comprehensive Survey for Cloud Computing Based Nature-Inspired Algorithms Optimization Scheduling. Asian Journal of Research in Computer Science, 8 (2), 1–16. https://doi.org/10.9734/ajrcos/2021/v8i230195
  43. Benoit-Cattin, T., Velasco-Montero, D., Fernández-Berni, J. (2020). Impact of Thermal Throttling on Long-Term Visual Inference in a CPU-Based Edge Device. Electronics, 9 (12), 2106. https://doi.org/10.3390/electronics9122106
  44. Dhameliya, N. (2022). Power Electronics Innovations: Improving Efficiency and Sustainability in Energy Systems. Asia Pacific Journal of Energy and Environment, 9 (2), 71–80. https://doi.org/10.18034/apjee.v9i2.752
  45. Iranfar, A., Terraneo, F., Csordas, G., Zapater, M., Fornaciari, W., Atienza, D. (2020). Dynamic Thermal Management with Proactive Fan Speed Control Through Reinforcement Learning. 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), 418–423. https://doi.org/10.23919/date48585.2020.9116510
  46. Zhang, X., Wu, Z., Sun, Q., Gu, W., Zheng, S., Zhao, J. (2024). Application and progress of artificial intelligence technology in the field of distribution network voltage Control: A review. Renewable and Sustainable Energy Reviews, 192, 114282. https://doi.org/10.1016/j.rser.2024.114282
  47. Devasenan, M., Madhavan, S. (2024). Thermal intelligence: exploring AI’s role in optimizing thermal systems – a review. Interactions, 245 (1). https://doi.org/10.1007/s10751-024-02122-6
  48. Zhuang, D., Gan, V. J. L., Duygu Tekler, Z., Chong, A., Tian, S., Shi, X. (2023). Data-driven predictive control for smart HVAC system in IoT-integrated buildings with time-series forecasting and reinforcement learning. Applied Energy, 338, 120936. https://doi.org/10.1016/j.apenergy.2023.120936
  49. Shaban, W. M., Kabeel, A. E., El Hadi Attia, M., Talaat, F. M. (2024). Optimizing photovoltaic thermal solar systems efficiency through advanced artificial intelligence driven thermal management techniques. Applied Thermal Engineering, 247, 123029. https://doi.org/10.1016/j.applthermaleng.2024.123029
  50. Jalasri, M., Panchal, S. M., Mahalingam, K., Venkatasubramanian, R., Hemalatha, R., Boopathi, S. (2024). AI-Powered Smart Energy Management for Optimizing Energy Efficiency in High-Performance Computing Systems. Future of Digital Technology and AI in Social Sectors. IGI Global, 329–366. https://doi.org/10.4018/979-8-3693-5533-6.ch012
  51. Zhang, K., Guliani, A., Ogrenci-Memik, S., Memik, G., Yoshii, K., Sankaran, R., Beckman, P. (2018). Machine Learning-Based Temperature Prediction for Runtime Thermal Management Across System Components. IEEE Transactions on Parallel and Distributed Systems, 29 (2), 405–419. https://doi.org/10.1109/tpds.2017.2732951
  52. Han, Z., Zhao, J., Leung, H., Ma, K. F., Wang, W. (2021). A Review of Deep Learning Models for Time Series Prediction. IEEE Sensors Journal, 21 (6), 7833–7848. https://doi.org/10.1109/jsen.2019.2923982
  53. Krivoguz, D., Ioshpa, A., Chernyi, S., Zhilenkov, A., Kustov, A., Zinchenko, A. (2024). Enhancing long-term air temperature forecasting with deep learning architectures. Journal of Robotics and Control, 5 (3), 706–716.
  54. Ghahramani, A., Galicia, P., Lehrer, D., Varghese, Z., Wang, Z., Pandit, Y. (2020). Artificial Intelligence for Efficient Thermal Comfort Systems: Requirements, Current Applications and Future Directions. Frontiers in Built Environment, 6. https://doi.org/10.3389/fbuil.2020.00049
  55. Zou, F., Yen, G. G., Tang, L., Wang, C. (2021). A reinforcement learning approach for dynamic multi-objective optimization. Information Sciences, 546, 815–834. https://doi.org/10.1016/j.ins.2020.08.101
  56. Du, Y., Zhou, Z., Yang, X., Yang, X., Wang, C., Liu, J., Yuan, J. (2023). Dynamic thermal environment management technologies for data center: A review. Renewable and Sustainable Energy Reviews, 187, 113761. https://doi.org/10.1016/j.rser.2023.113761
  57. Arshad, R., Zahoor, S., Shah, M. A., Wahid, A., Yu, H. (2017). Green IoT: An Investigation on Energy Saving Practices for 2020 and Beyond. IEEE Access, 5, 15667–15681. https://doi.org/10.1109/access.2017.2686092
  58. Halhoul Merabet, G., Essaaidi, M., Ben Haddou, M., Qolomany, B., Qadir, J., Anan, M. et al. (2021). Intelligent building control systems for thermal comfort and energy-efficiency: A systematic review of artificial intelligence-assisted techniques. Renewable and Sustainable Energy Reviews, 144, 110969. https://doi.org/10.1016/j.rser.2021.110969
  59. Emara, R. A. M. O. (2024). Artificial Intelligence Based Controller for a Temperature Control System. [PhD thesis; Faculty of Engineering, The British University in Egypt].
  60. Cox, S. J., Kim, D., Cho, H., Mago, P. (2019). Real time optimal control of district cooling system with thermal energy storage using neural networks. Applied Energy, 238, 466–480. https://doi.org/10.1016/j.apenergy.2019.01.093
  61. Gill, S. S., Xu, M., Ottaviani, C., Patros, P., Bahsoon, R., Shaghaghi, A. et al. (2022). AI for next generation computing: Emerging trends and future directions. Internet of Things, 19, 100514. https://doi.org/10.1016/j.iot.2022.100514
  62. Datta, S., Chakraborty, W., Radosavljevic, M. (2022). Toward attojoule switching energy in logic transistors. Science, 378 (6621), 733–740. https://doi.org/10.1126/science.ade7656
  63. Bahru, R., Hamzah, A. A., Mohamed, M. A. (2020). Thermal management of wearable and implantable electronic healthcare devices: Perspective and measurement approach. International Journal of Energy Research, 45 (2), 1517–1534. https://doi.org/10.1002/er.6031
  64. Mallick, S., Gayen, D. (2023). Thermal behaviour and thermal runaway propagation in lithium-ion battery systems – A critical review. Journal of Energy Storage, 62, 106894. https://doi.org/10.1016/j.est.2023.106894
  65. Zhao, J., Feng, X., Tran, M.-K., Fowler, M., Ouyang, M., Burke, A. F. (2024). Battery safety: Fault diagnosis from laboratory to real world. Journal of Power Sources, 598, 234111. https://doi.org/10.1016/j.jpowsour.2024.234111
  66. Hanafi, A., Moawed, M., Abdellatif, O. (2024). Advancing Sustainable Energy Management: A Comprehensive Review of Artificial Intelligence Techniques in Building. Engineering Research Journal (Shoubra), 53 (2), 26–46. https://doi.org/10.21608/erjsh.2023.226854.1196
  67. Tong, X. C. (2010). Development and Application of Advanced Thermal Management Materials. Advanced Materials for Thermal Management of Electronic Packaging, 527–593. https://doi.org/10.1007/978-1-4419-7759-5_12
  68. Van Quang, T., Doan, D. T., Yun, G. Y. (2024). Recent advances and effectiveness of machine learning models for fluid dynamics in the built environment. International Journal of Modelling and Simulation, 1–27. https://doi.org/10.1080/02286203.2024.2371682
  69. Hu, G., Prasianakis, N., Churakov, S. V., Pfingsten, W. (2024). Performance analysis of data-driven and physics-informed machine learning methods for thermal-hydraulic processes in Full-scale Emplacement experiment. Applied Thermal Engineering, 245, 122836. https://doi.org/10.1016/j.applthermaleng.2024.122836
  70. Li, Z., Luo, H., Jiang, Y., Liu, H., Xu, L., Cao, K. et al. (2024). Comprehensive review and future prospects on chip-scale thermal management: Core of data center’s thermal management. Applied Thermal Engineering, 251, 123612. https://doi.org/10.1016/j.applthermaleng.2024.123612
  71. Wang, J., Zhao, T. (2024). Medium spatiotemporal characteristics based global optimization method for energy efficiency trade-off issue in variable flow rate HVAC system. Applied Thermal Engineering, 247, 123132. https://doi.org/10.1016/j.applthermaleng.2024.123132
  72. Chatterjee, A., Khovalyg, D. (2023). Dynamic indoor thermal environment using Reinforcement Learning-based controls: Opportunities and challenges. Building and Environment, 244, 110766. https://doi.org/10.1016/j.buildenv.2023.110766
  73. Boinapalli, N. R. (2020). Digital transformation in us industries: Ai as a catalyst for sustainable growth. NEXG AI Review of America, 1 (1), 70–84.
  74. Khan, O., Parvez, M., Seraj, M., Yahya, Z., Devarajan, Y., Nagappan, B. (2024). Optimising building heat load prediction using advanced control strategies and Artificial Intelligence for HVAC system. Thermal Science and Engineering Progress, 49, 102484. https://doi.org/10.1016/j.tsep.2024.102484
  75. Olabi, A. G., Abdelghafar, A. A., Maghrabie, H. M., Sayed, E. T., Rezk, H., Radi, M. A. et al. (2023). Application of artificial intelligence for prediction, optimization, and control of thermal energy storage systems. Thermal Science and Engineering Progress, 39, 101730. https://doi.org/10.1016/j.tsep.2023.101730
  76. Dinakarrao, S. M. P., Joseph, A., Haridass, A., Shafique, M., Henkel, J., Homayoun, H. (2019). Application and Thermal-reliability-aware Reinforcement Learning Based Multi-core Power Management. ACM Journal on Emerging Technologies in Computing Systems, 15 (4), 1–19. https://doi.org/10.1145/3323055
  77. Shahid, A., Plaum, F., Korõtko, T., Rosin, A. (2024). AI Technologies and Their Applications in Small-Scale Electric Power Systems. IEEE Access, 12, 109984–110001. https://doi.org/10.1109/access.2024.3440067
  78. Ahmad, T., Chen, H., Huang, R., Yabin, G., Wang, J., Shair, J. et al. (2018). Supervised based machine learning models for short, medium and long-term energy prediction in distinct building environment. Energy, 158, 17–32. https://doi.org/10.1016/j.energy.2018.05.169
  79. Wang, Z., Hong, T., Piette, M. A. (2020). Building thermal load prediction through shallow machine learning and deep learning. Applied Energy, 263, 114683. https://doi.org/10.1016/j.apenergy.2020.114683
  80. Hundi, P., Shahsavari, R. (2020). Comparative studies among machine learning models for performance estimation and health monitoring of thermal power plants. Applied Energy, 265, 114775. https://doi.org/10.1016/j.apenergy.2020.114775
  81. Xiao, P., Ni, Z., Liu, D., Hu, Z. (2021). A power and thermal-aware virtual machine management framework based on machine learning. Cluster Computing, 24 (3), 2231–2248. https://doi.org/10.1007/s10586-020-03228-6
  82. Lin, W., Wu, G., Wang, X., Li, K. (2020). An Artificial Neural Network Approach to Power Consumption Model Construction for Servers in Cloud Data Centers. IEEE Transactions on Sustainable Computing, 5 (3), 329–340. https://doi.org/10.1109/tsusc.2019.2910129
  83. Chen, K.-C., Liao, Y.-H., Chen, C.-T., Wang, L.-Q. (2023). Adaptive Machine Learning-Based Proactive Thermal Management for NoC Systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 31 (8), 1114–1127. https://doi.org/10.1109/tvlsi.2023.3282969
  84. Patel, K., Mehta, N., Oza, P., Thaker, J., Bhise, A. (2024). Revolutionizing Data Centre Sustainability: The Role of Machine Learning in Energy Efficiency. 2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI), 1–6. https://doi.org/10.1109/iatmsi60426.2024.10503107
  85. Erhan, L., Ndubuaku, M., Di Mauro, M., Song, W., Chen, M., Fortino, G., Bagdasar, O., Liotta, A. (2021). Smart anomaly detection in sensor systems: A multi-perspective review. Information Fusion, 67, 64–79. https://doi.org/10.1016/j.inffus.2020.10.001
  86. Fan, C., Xiao, F., Li, Z., Wang, J. (2018). Unsupervised data analytics in mining big building operational data for energy efficiency enhancement: A review. Energy and Buildings, 159, 296–308. https://doi.org/10.1016/j.enbuild.2017.11.008
  87. Bueno, A. M., Mendes da Luz, I., Niza, I. L., Broday, E. E. (2023). Hierarchical and K-means clustering to assess thermal dissatisfaction and productivity in university classrooms. Building and Environment, 233, 110097. https://doi.org/10.1016/j.buildenv.2023.110097
  88. Surucu, O., Gadsden, S. A., Yawney, J. (2023). Condition Monitoring using Machine Learning: A Review of Theory, Applications, and Recent Advances. Expert Systems with Applications, 221, 119738. https://doi.org/10.1016/j.eswa.2023.119738
  89. Schneider, T., Bedrikow, A. B., Stahl, K. (2024). Enhanced prediction of thermomechanical systems using machine learning, PCA, and finite element simulation. Advanced Modeling and Simulation in Engineering Sciences, 11 (1). https://doi.org/10.1186/s40323-024-00268-0
  90. Zhou, X., Du, H., Xue, S., Ma, Z. (2024). Recent advances in data mining and machine learning for enhanced building energy management. Energy, 307, 132636. https://doi.org/10.1016/j.energy.2024.132636
  91. Zhu, S., Lu, W., Feng, Y., Sun, C. (2024). Energy Optimization for Building Energy Management with Thermal Storage: A Multi-Agent Deep Reinforcement Learning Approach. 2024 43rd Chinese Control Conference (CCC), 2805–2812. https://doi.org/10.23919/ccc63176.2024.10661808
  92. Zhang, Z., Lam, K. P. (2018). Practical implementation and evaluation of deep reinforcement learning control for a radiant heating system. Proceedings of the 5th Conference on Systems for Built Environments, 148–157. https://doi.org/10.1145/3276774.3276775
  93. Ortiz, Y., Arévalo, P., Peña, D., Jurado, F. (2024). Recent Advances in Thermal Management Strategies for Lithium-Ion Batteries: A Comprehensive Review. Batteries, 10 (3), 83. https://doi.org/10.3390/batteries10030083
  94. Vamvakas, D., Michailidis, P., Korkas, C., Kosmatopoulos, E. (2023). Review and Evaluation of Reinforcement Learning Frameworks on Smart Grid Applications. Energies, 16 (14), 5326. https://doi.org/10.3390/en16145326
  95. Shi, Z., Zheng, R., Zhao, J., Shen, R., Gu, L., Liu, Y. et al. (2024). Towards various occupants with different thermal comfort requirements: A deep reinforcement learning approach combined with a dynamic PMV model for HVAC control in buildings. Energy Conversion and Management, 320, 118995. https://doi.org/10.1016/j.enconman.2024.118995
  96. Ran, Y., Hu, H., Wen, Y., Zhou, X. (2023). Optimizing Energy Efficiency for Data Center via Parameterized Deep Reinforcement Learning. IEEE Transactions on Services Computing, 16 (2), 1310–1323. https://doi.org/10.1109/tsc.2022.3184835
  97. Chang, C.-W., Dinh, N. T. (2019). Classification of machine learning frameworks for data-driven thermal fluid models. International Journal of Thermal Sciences, 135, 559–579. https://doi.org/10.1016/j.ijthermalsci.2018.09.002
  98. Li, A., Weng, J., Yuen, A. C. Y., Wang, W., Liu, H., Lee, E. W. M. et al. (2023). Machine learning assisted advanced battery thermal management system: A state-of-the-art review. Journal of Energy Storage, 60, 106688. https://doi.org/10.1016/j.est.2023.106688
  99. Ababei, C., Moghaddam, M. G. (2019). A Survey of Prediction and Classification Techniques in Multicore Processor Systems. IEEE Transactions on Parallel and Distributed Systems, 30 (5), 1184–1200. https://doi.org/10.1109/tpds.2018.2878699
  100. Kirchgässner, W., Wallscheid, O., Böcker, J. (2023). Thermal neural networks: Lumped-parameter thermal modeling with state-space machine learning. Engineering Applications of Artificial Intelligence, 117, 105537. https://doi.org/10.1016/j.engappai.2022.105537
  101. Aparna, R., Idicula, S. M. (2022). Spatio-Temporal Data Clustering using Deep Learning: A Review. 2022 IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS), 1–10. https://doi.org/10.1109/eais51927.2022.9787701
  102. Werner, D., Juretus, K., Savidis, I., Hempstead, M. (2018). Machine Learning on the Thermal Side-Channel: Analysis of Accelerator-Rich Architectures. 2018 IEEE 36th International Conference on Computer Design (ICCD), 83–91. https://doi.org/10.1109/iccd.2018.00022
  103. Ukiwe, E. K., Adeshina, S. A., Jacob, T., Adetokun, B. B. (2024). Deep learning model for detection of hotspots using infrared thermographic images of electrical installations. Journal of Electrical Systems and Information Technology, 11 (1). https://doi.org/10.1186/s43067-024-00148-y
  104. Zhao, X., Zhao, Y., Hu, S., Wang, H., Zhang, Y., Ming, W. (2023). Progress in Active Infrared Imaging for Defect Detection in the Renewable and Electronic Industries. Sensors, 23 (21), 8780. https://doi.org/10.3390/s23218780
  105. King, M., Woo, S. I., Yune, C.-Y. (2024). Utilizing a CNN-RNN machine learning approach for forecasting time-series outlet fluid temperature monitoring by long-term operation of BHEs system. Geothermics, 122, 103082. https://doi.org/10.1016/j.geothermics.2024.103082
  106. Deepak, G., Parthiban, M., Nath, Srigitha, S., Sulaiman Alfurhood, B., Mouleswararao, B., Ravi Kishore, V. (2024). Ai-enhanced thermal modeling for integrated process-product-system optimization in zero-defect manufacturing chains. Thermal Science and Engineering Progress, 55, 102945. https://doi.org/10.1016/j.tsep.2024.102945
  107. Chike, O. G., Ahmad, N., Faiz Wan Ali, W. F. (2024). Neural network prediction of thermal field spatiotemporal evolution during additive manufacturing: an overview. The International Journal of Advanced Manufacturing Technology, 134 (5-6), 2107–2128. https://doi.org/10.1007/s00170-024-14256-6
  108. Szymanik, B., Psuj, G., Hashemi, M., Lopato, P. (2021). Detection and Identification of Defects in 3D-Printed Dielectric Structures via Thermographic Inspection and Deep Neural Networks. Materials, 14 (15), 4168. https://doi.org/10.3390/ma14154168
  109. Wu, S.-H., Tariq, U., Joy, R., Mahmood, M. A., Malik, A. W., Liou, F. (2024). A Robust Recurrent Neural Networks-Based Surrogate Model for Thermal History and Melt Pool Characteristics in Directed Energy Deposition. Materials, 17 (17), 4363. https://doi.org/10.3390/ma17174363
  110. Eivazi, H., Guastoni, L., Schlatter, P., Azizpour, H., Vinuesa, R. (2021). Recurrent neural networks and Koopman-based frameworks for temporal predictions in a low-order model of turbulence. International Journal of Heat and Fluid Flow, 90, 108816. https://doi.org/10.1016/j.ijheatfluidflow.2021.108816
  111. Drgoňa, J., Tuor, A. R., Chandan, V., Vrabie, D. L. (2021). Physics-constrained deep learning of multi-zone building thermal dynamics. Energy and Buildings, 243, 110992. https://doi.org/10.1016/j.enbuild.2021.110992
  112. Cheng, Y., Huang, Y., Pang, B., Zhang, W. (2018). ThermalNet: A deep reinforcement learning-based combustion optimization system for coal-fired boiler. Engineering Applications of Artificial Intelligence, 74, 303–311. https://doi.org/10.1016/j.engappai.2018.07.003
  113. Akhsham, M., Dousti, M. J., Safari, S. (2025). Neural Network-Based Control of Forced-Convection and Thermoelectric Coolers. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 44 (2), 582–591. https://doi.org/10.1109/tcad.2024.3438689
  114. Li, M., Dai, L., Hu, Y. (2022). Machine Learning for Harnessing Thermal Energy: From Materials Discovery to System Optimization. ACS Energy Letters, 7 (10), 3204–3226. https://doi.org/10.1021/acsenergylett.2c01836
  115. Zhang, B., Hu, W., Cao, D., Huang, Q., Chen, Z., Blaabjerg, F. (2019). Deep reinforcement learning–based approach for optimizing energy conversion in integrated electrical and heating system with renewable energy. Energy Conversion and Management, 202, 112199. https://doi.org/10.1016/j.enconman.2019.112199
  116. Ashayeri, M., Abbasabadi, N. (2024). A Hybrid Physics‐Based Machine Learning Approach for Integrated Energy and Exposure Modeling. Artificial Intelligence in Performance‐Driven Design, 57–79. https://doi.org/10.1002/9781394172092.ch3
  117. Anwar, A., Talha, M., Hameed, A. (2023). Application of Artificial Intelligence in Thermal Management and Wavelet Analysis: A Comprehensive Review. https://doi.org/10.31219/osf.io/d2vn3
  118. Ali, S. A., Habib, K., Younas, M., Rahman, S., Das, L., Rubbi, F. et al. (2024). Advancements in Thermal Energy Storage: A Review of Material Innovations and Strategic Approaches for Phase Change Materials. Energy & Fuels, 38 (20), 19336–19392. https://doi.org/10.1021/acs.energyfuels.4c03634
  119. Sadeghi, G. (2022). Energy storage on demand: Thermal energy storage development, materials, design, and integration challenges. Energy Storage Materials, 46, 192–222. https://doi.org/10.1016/j.ensm.2022.01.017
  120. Chekifi, T., Boukraa, M., Benmoussa, A. (2024). Artificial Intelligence for Thermal Energy Storage Enhancement: A Comprehensive Review. Journal of Energy Resources Technology, 146 (6). https://doi.org/10.1115/1.4065197
  121. Bandhu, D., Khadir, M. D., Kaushik, A., Sharma, S., Ali, H. A., Jain, A. (2023). Innovative Approaches to Thermal Management in Next-Generation Electronics. E3S Web of Conferences, 430, 01139. https://doi.org/10.1051/e3sconf/202343001139
  122. Lodhi, S. K., Hussain, H. K., Hussain, I. (2024). Using AI to Increase Heat Exchanger Efficiency: An Extensive Analysis of Innovations and Uses. International Journal of Multidisciplinary Sciences and Arts, 3 (4), 1–14. https://doi.org/10.47709/ijmdsa.v3i4.4617
  123. Sabegh, M. (2022). Deep Reinforcement Learning and Model Predictive Control Approaches for the Scheduled Operation of Domestic Refrigerators. [PhD thesis; University of Lincoln].
  124. Ghalkhani, M., Habibi, S. (2022). Review of the Li-Ion Battery, Thermal Management, and AI-Based Battery Management System for EV Application. Energies, 16 (1), 185. https://doi.org/10.3390/en16010185
  125. Nasiri, M., Hadim, H. (2024). Advances in battery thermal management: Current landscape and future directions. Renewable and Sustainable Energy Reviews, 200, 114611. https://doi.org/10.1016/j.rser.2024.114611
  126. Cao, K., Li, Z., Luo, H., Jiang, Y., Liu, H., Xu, L. et al. (2024). Comprehensive review and future prospects of multi-level fan control strategies in data centers for joint optimization of thermal management systems. Journal of Building Engineering, 94, 110021. https://doi.org/10.1016/j.jobe.2024.110021
  127. Nadjahi, C., Louahlia, H., Lemasson, S. (2018). A review of thermal management and innovative cooling strategies for data center. Sustainable Computing: Informatics and Systems, 19, 14–28. https://doi.org/10.1016/j.suscom.2018.05.002
  128. Weinstein, J. (2023). Semiconductors and the calculation of the balance of power. Available at: https://knowledge.uchicago.edu/nanna/record/6118/files/Semiconductors%20and%20the%20Calculation%20of%20the%20Balance%20of%20Power.pdf?withWatermark=0&withMetadata=0&registerDownload=1&version=1
  129. Hosseinimotlagh, S., Enright, D., Shelton, C. R., Kim, H. (2021). Data-Driven Structured Thermal Modeling for COTS Multi-core Processors. 2021 IEEE Real-Time Systems Symposium (RTSS), 201–213. https://doi.org/10.1109/rtss52674.2021.00028
  130. Hirtz, T., Tian, H., Shahzad, S., Wu, F., Yang, Y., Ren, T.-L. (2024). Deep reinforcement learning framework for end-to-end semiconductor process control. Neural Computing and Applications, 36 (20), 12443–12460. https://doi.org/10.1007/s00521-024-09710-1
  131. Radamson, H. H., Zhu, H., Wu, Z., He, X., Lin, H., Liu, J. et al. (2020). State of the Art and Future Perspectives in Advanced CMOS Technology. Nanomaterials, 10 (8), 1555. https://doi.org/10.3390/nano10081555
  132. Fassi, Y., Heiries, V., Boutet, J., Boisseau, S. (2024). Toward Physics-Informed Machine-Learning-Based Predictive Maintenance for Power Converters – A Review. IEEE Transactions on Power Electronics, 39 (2), 2692–2720. https://doi.org/10.1109/tpel.2023.3328438
  133. Buffa, S., Fouladfar, M. H., Franchini, G., Lozano Gabarre, I., Andrés Chicote, M. (2021). Advanced Control and Fault Detection Strategies for District Heating and Cooling Systems – A Review. Applied Sciences, 11 (1), 455. https://doi.org/10.3390/app11010455
  134. Zhang, Y., Zhao, Y., Dai, S., Nie, B., Ma, H., Li, J. et al. (2022). Cooling technologies for data centres and telecommunication base stations – A comprehensive review. Journal of Cleaner Production, 334, 130280. https://doi.org/10.1016/j.jclepro.2021.130280
  135. Suryadevara, S. (2021). Energy-proportional computing: Innovations in data center efficiency and performance optimization. International Journal, 44–64.
  136. Li, Y., Wen, Y., Tao, D., Guan, K. (2020). Transforming Cooling Optimization for Green Data Center via Deep Reinforcement Learning. IEEE Transactions on Cybernetics, 50 (5), 2002–2013. https://doi.org/10.1109/tcyb.2019.2927410
  137. Biswas, P., Rashid, A., Biswas, A., Nasim, M. A. A., Chakraborty, S., Gupta, K. D., George, R. (2024). AI-driven approaches for optimizing power consumption: a comprehensive survey. Discover Artificial Intelligence, 4 (1). https://doi.org/10.1007/s44163-024-00211-7
  138. Velayutham, A. (2019). Ai-driven storage optimization for sustainable cloud data centers: Reducing energy consumption through predictive analytics, dynamic storage scaling, and proactive resource allocation. Sage Science Review of Applied Machine Learning, 2 (2), 57–71.
  139. Dadashi, S., Aghasi, A. (2024). Thermal-aware virtual machine placement approaches: A survey. Journal of Mahani Mathematical Research Center, 13 (2).
  140. Gu, J. (2023). Characterization and modelling of resource usage and energy consumption in hpc datacenters by machine learnin. [Master Thesis; University of Amsterdam].
  141. Boppana, V. R. (2023). Data Analytics for Predictive Maintenance in Healthcare Equipment. EPH-International Journal of Business & Management Science, 9 (2), 26–36. https://doi.org/10.53555/eijbms.v10i1.176
  142. Casado-Vara, R., Vale, Z., Prieto, J., Corchado, J. M. (2018). Fault-Tolerant Temperature Control Algorithm for IoT Networks in Smart Buildings. Energies, 11 (12), 3430. https://doi.org/10.3390/en11123430
  143. Balali, Y., Chong, A., Busch, A., O’Keefe, S. (2023). Energy modelling and control of building heating and cooling systems with data-driven and hybrid models – A review. Renewable and Sustainable Energy Reviews, 183, 113496. https://doi.org/10.1016/j.rser.2023.113496
  144. Pattyam, S. P. (2020). Ai in data science for predictive analytics: Techniques for model development, validation, and deployment. Journal of Science & Technology, 1 (1), 511–552.
  145. Latapy, A., Ferret, Y., Testut, L., Talke, S., Aarup, T., Pons, F., Jan, G., Bradshaw, E., Pouvreau, N. (2022). Data rescue process in the context of sea level reconstructions: An overview of the methodology, lessons learned, up‐to‐date best practices and recommendations. Geoscience Data Journal, 10 (3), 396–425. https://doi.org/10.1002/gdj3.179
  146. Liang, W., Tadesse, G. A., Ho, D., Fei-Fei, L., Zaharia, M., Zhang, C., Zou, J. (2022). Advances, challenges and opportunities in creating data for trustworthy AI. Nature Machine Intelligence, 4 (8), 669–677. https://doi.org/10.1038/s42256-022-00516-1
  147. Shah, V., Konda, S. R. (2021). Neural networks and explainable ai: Bridging the gap between models and interpretability. International Journal of Computer Science and Technology, 5 (2), 163–176.
  148. Chen, Z., Xiao, F., Guo, F., Yan, J. (2023). Interpretable machine learning for building energy management: A state-of-the-art review. Advances in Applied Energy, 9, 100123. https://doi.org/10.1016/j.adapen.2023.100123
  149. Buah, E. (2022). Artificial intelligence technology acceptance framework for energy systems analysis. Available at: https://lutpub.lut.fi/handle/10024/163686
  150. Sheriffdeen, K. (2024). Physics-based simulation-assisted machine learning for estimating engineering system failure durations. Available at: https://easychair.org/publications/preprint/nHDK
  151. Kasaraneni, R. K. (2020). AI-enhanced energy management systems for electric vehicles: Optimizing battery performance and longevity. Journal of Science & Technology, 1 (1), 670–708.
  152. Modupe, O. T., Otitoola, A. A., Oladapo, O. J., Abiona, O. O., Oyeniran, O. C., Adewusi, A. O., et al. (2024). Reviewing the transformational impact of edge computing on real-time data processing and analytics. Computer Science & IT Research Journal, 5 (3), 693–702. https://doi.org/10.51594/csitrj.v5i3.929
Assessing the potential of artificial intelligence and machine learning for thermal management in electronic devices

Downloads

Published

2025-02-20

How to Cite

Yatskiv, O., & Koman, B. (2025). Assessing the potential of artificial intelligence and machine learning for thermal management in electronic devices. Technology Audit and Production Reserves, 1(1(81), 58–74. https://doi.org/10.15587/2706-5448.2025.323117

Issue

Section

Electrical Engineering and Industrial Electronics