Integration and coordination of electronic warfare assets through large-scale language models

Authors

DOI:

https://doi.org/10.15587/2706-5448.2025.323916

Keywords:

electronic warfare, large language models, artificial intelligence, multi-agent structures, knowledge base, executive modules

Abstract

As an object of research, the work considers the process of functioning of electronic warfare (EW) means using artificial intelligence (AI) technologies based on large language models (LLM). One of the most problematic issues in increasing the efficiency of their functioning is ensuring the adaptability function in EW means, as well as timely detection of threats and formation of appropriate countermeasures. This problem is solved by implementing a multi-agent architecture, the task of which is to ensure continuous exchange of information, both between agents in the EW means themselves and in the system as a whole.

The considered method of increasing the adaptability of the system due to LLM with self-learning mechanisms provides the system with the opportunity to improve its data processing algorithms, promptly detect new types of signals and respond to changes in the parameters of the enemy's REM. Using the Retrieval-Augmented Generation (RAG) approach allows to detect and enter new types of signals into the database and quickly form appropriate recommendations for countermeasures.

An equally important component is the use of combining several EW tools into a single information network. This approach will ensure the consistency of the actions of all EW tools (agents) and the rapid exchange of information between them.

Taking into account the above, there is a possibility of significantly increasing the adaptability and efficiency of EW systems by integrating multi-agent structures using LLM, which allow optimizing resource allocation and making decisions in real time. This will ensure a high level of adaptation of EW tools, which is an important feature for working in conditions of dynamically changing electromagnetic environments.

Thanks to the proposed architecture and the use of appropriate algorithms, it is possible to obtain high indicators of classification accuracy and signal processing speed, which positively affects the adaptability of the system and the overall effectiveness of countering threats.

Author Biographies

Vadym Kozlov, Central Scientific Research Institute of Armament and Military Equipment of Armed Forces of Ukraine

PhD

Scientific and Organizational Department

Vadym Slyusar, Central Scientific Research Institute of Armament and Military Equipment of Armed Forces of Ukraine

Doctor of Technical Sciences, Professor, IEEE Member, Chief Researcher, Group Leader

Volodymyr Tverdokhlibov, Central Scientific Research Institute of Armament and Military Equipment of Armed Forces of Ukraine

PhD, Senior Researcher, Head of Research Department

Zoia Andriichuk, Central Scientific Research Institute of Armament and Military Equipment of Armed Forces of Ukraine

Researcher

Scientific and Information Department

References

  1. Kozlov, V. H., Sliusar, V. I. (2024). Kontseptsiia tekhnolohii shtuchnoho intelektu yak osnovnoi skladovoi radioelektronnoi borotby. Ozbroiennia ta viiskova tekhnika, 2 (42), 76–83.
  2. Duro, R., Kondratenko, Y. (Eds.) (2015). Advances in Intelligent Robotics and Collaborative Automation. Aalborg: River Publishers. https://doi.org/10.13052/rp-9788793237049
  3. Laurent, A. (2023). La guerre des intelligences à l'heure de ChatGPT. Lattes, 480.
  4. Taverniti, G., Lombardo, C., Vicario, P. D., Trocca, F. (2023). AI Power. Non solo ChatGPT: lavoro, marketing e futuro. Milano: Editore Ulrico Hoepli, 224.
  5. Velyki movni modeli (LLM): Povnyi posibnyk u 2025 rotsi. Available at: https://uk.shaip.com/blog/a-guide-large-language-model-llm/?utm_source=chatgpt.com#Blocks
  6. Introducing ChatGPT (2022). OpenAI. Available at: https://openai.com/blog/chatgpt/
  7. GPT-4 technical report (2023). OpenAI, arXiv. Available at: https://archive.org/details/gpt-4-technical-paper
  8. GPT-4 technical report (2024). OpenAI. arXiv. Available at: https://doi.org/10.48550/arXiv.2303.08774
  9. Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M., Lacroix, T. et al. (2023). LLaMA: Open and Efficient Foundation Language Models. arXiv preprint. https://doi.org/10.48550/arXiv.2302.13971
  10. Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A. et al. (2024). The Llama 3 Herd of Models. arXiv preprint. https://doi.org/10.48550/arXiv.2407.21783
  11. OpenAI o1 System Card (2024). OpenAI. Available at: https://assets.ctfassets.net/kftzwdyauwt9/67qJD51Aur3eIc96iOfeOP/71551c3d223cd97e591aa89567306912/o1_system_card.pdf
  12. Truth, M. (2024). Massive breakthrough in AI intelligence: OpenAI passes IQ 120. Available at: https://www.maximumtruth.org/p/massive-breakthrough-in-ai-intelligence. Last accessed: 16.09.2024
  13. Jiang, A., Sablayrolles, A., Mensch, C., Bamford, D., Singh Chaplot, D., Casas, F. et al. (2023). Mistral 7B’. arXiv. https://doi.org/10.48550/arXiv.2310.06825
  14. Georgiev, P., Le, V. I., Burnell, R., Bai, L., Gulati, A., Tanzer, G. et al. (2024). Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint. https://doi.org/10.48550/arXiv.2403.05530
  15. Claude 3.5 Sonnet (2024). Anthropic. Available at: http://www.anthropic.com/news/claude-3-5-sonnet
  16. McKay, C. (2024). xAI Launches Grok-2 Models with Image Generation Capabilities. Maginative. Available at: https://www.maginative.com/article/xai-launches-grok-2-models-with-image-generation-capabilities/
  17. Jones, L. (2024). Microsoft Launches Phi-3.5 Series, A Trio of Open Source AI Models. WinBuzzer. Available at: https://winbuzzer.com/2024/08/21/microsoft-launches-phi-3-5-series-competing-with-google-and-openai-xcxwbn/
  18. Slyusar, V. (2023). Large language models (LLM) in the military area, Artificial Intelligence and Intellegent Systems (AIIS’2023). https://doi.org/10.13140/RG.2.2.30196.94086
  19. Slyusar, V. (2024). Reducing the Cognitive Burden of a Soldier with the Help of Personal AI and LLM Assistant. The LCGDSS Human System Integration (HSI) symposium. https://doi.org/10.13140/RG.2.2.10264.57605/1
  20. Syzov, D. (2024). Pentahon doslidzhuie viiskove vykorystannia ShI. Available at: https://internetua.com/pentagon-doslidjuye-viiskove-vikoristannya-shi?utm_source=ukrnet_news
  21. Pomfret, J., Pang, J. (2024). Chinese researchers develop AI model for military use, back Meta’s Llama. Reuters. Available at: https://www.reuters.com/technology/artificial-intelligence/chinese-researchers-develop-ai-model-military-use-back-metas-llama-2024-11-01/
  22. Chen, S. (2024). Chinese scientists create and cage world’s first AI commander in PLA laboratory. South China Morning Post. Available at: https://www.scmp.com/news/china/science/article/3266444/chinese-scientists-create-and-cage-worlds-first-ai-commander-pla-laboratory
  23. Barbu, A. M. D. (2023). Inteligenta artificial: cum vor schimba AI, Deep Learning si robotica domeniul militar. Bucuresti: Editura Militara, 178.
  24. Naida, A. (2024). Zastosuvannia velykykh movnykh modelei do rozrobky stratehii v nastilnykh ihrakh. Kyiv. Available at: https://ekmair.ukma.edu.ua/server/api/core/bitstreams/05501a82-4d67-423d-ac93-c3694f3399c6/content
  25. Wieroński, T. (2023). Sztuczna inteligencja w strategicznych grach planszowych: czy algorytm może zastąpić człowieka? Krakow: Wydawnictwa AGH, 80.
  26. Slyusar, V. I., Sliusar, I. I. (2024). Leveraging Pre-trained Neural Networks for Image Classification in Audio Signal Analysis for Mobile Applications of Home Automation. Research Tendencies and Prospect Domains for AI Development and Implementation, 109–126. https://doi.org/10.1201/9788770046947-6
  27. Slyusar, V., Protsenko, M., Chernukha, A., Melkin, V., Biloborodov, O., Samoilenko, M. et al. (2022). Improving the model of object detection on aerial photographs and video in unmanned aerial systems. Eastern-European Journal of Enterprise Technologies, 1 (9 (115)), 24–34. https://doi.org/10.15587/1729-4061.2022.252876
  28. Slyusar, V. I. (2022). Application of Neural Network Technologies for Underwater Munitions Detection. Radioelectronics and Communications Systems, 65 (12), 654–664. https://doi.org/10.3103/s0735272723030020
  29. Slyusar, V., Sliusar, I., Bihun, N., Piliuhin, V. (2022). Segmentation of analogue meter readings using neural networks. 44th International Workshop on Modern Machine Learning Technologies and Data Science MOMLET&DS2022. Leiden – Lviv, 165–175.
  30. Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N. et al. (2020). Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. https://doi.org/10.48550/arXiv.2005.11401
  31. Ota, D. (2016). Towards Verification of NATO Generic Vehicle Architecture-Based Systems. Proceedings of the Twenty-First International Command and Control Research and Technology Symposium (21ST ICCRTS). London, 22. Available at: https://www.researchgate.net/publication/309027098_Towards_Verification_of_NATO_Generic_Vehicle_Architecture-Based_Systems
  32. Zhou, Z.-H. (2012). Ensemble Methods: Foundations and Algorithms (Chapman & Hall/CRC Machine Learning & Pattern Recognition). Boca Raton: CRC Press, Taylor & Francis Group.
  33. Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., Dean, J. (2017). Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv. https://doi.org/10.48550/arXiv.1701.06538
  34. Mixtral of experts A high quality Sparse Mixture-of-Experts (2023). Available at: https://mistral.ai/news/mixtral-of-experts/
  35. Chen, Z., Deng, Y., Wu, Y., Gu, Q., Li, Y. (2022). Towards Understanding Mixture of Experts in Deep Learning. https://doi.org/10.48550/arXiv.2208.02813
Integration and coordination of electronic warfare assets through large-scale language models

Downloads

Published

2025-02-27

How to Cite

Kozlov, V., Slyusar, V., Tverdokhlibov, V., & Andriichuk, Z. (2025). Integration and coordination of electronic warfare assets through large-scale language models. Technology Audit and Production Reserves, 1(2(81), 54–61. https://doi.org/10.15587/2706-5448.2025.323916

Issue

Section

Systems and Control Processes