Development of a logistic model for energy transition to renewable energy sources with energy security consideration

Authors

DOI:

https://doi.org/10.15587/2706-5448.2025.340373

Keywords:

energy transition, renewable energy sources, modeling, energy security, logistic model, forecasting, resilience, risks

Abstract

The object of the study is the process of energy transition to renewable energy sources (RES) at the enterprise or regional level, aimed at replacing traditional carbon-based sources of electricity. One of the most problematic issues is the insufficient consideration of energy security factors in existing forecasting models, which leads to risks of electricity shortages, especially under conditions of RES intermittency and geopolitical challenges such as military attacks or import dependence. A literature review showed that existing models do not account for dynamic constraints in the implementation of RES, which limits their practical applicability for ensuring power system resilience.

In the course of the research, numerical modeling methods were used, in particular an adaptation of the logistic growth equation with an integrated dynamic security factor Sb(t). This makes it possible to fill the gaps in existing models with regard to risk assessment and ensuring system stability. The obtained logistic model predicts the energy transition with RES reaching a 68% share in 24 years for a typical region without compromising security. This is due to the fact that the proposed model has such features as the integration of the coefficient of energy transition rate (CETR) and the dynamic constraint Sb(t), which adapts to changes in demand and reserve. This allows identifying the potential to increase system resilience through the optimal balance of RES and traditional sources during the transition.

As a result, it becomes possible to achieve such indicator values as a 68% share of RES, owing to the model’s flexibility to local conditions (variations of ρ, γ, k) and the consideration of worst-case scenarios (CF.min). Compared with similar known models, this provides advantages such as adaptability to regional risks, more accurate forecasting of the transition rate, and reduction of blackout probability. This is particularly relevant for vulnerable power systems, both in Ukraine and worldwide.

Author Biographies

Oleksii Zhukov, Vinnytsia National Technical University

PhD, Associate Professor

Department of Computerized Electromechanical Systems and Complexes

Serhii Boiko, National University “Zaporizhzhia Polytechnic”

PhD, Associate Professor

Department of Transportation Technologies

Andrii Koval, Vinnytsia National Technical University

PhD

Department of Computerized Electromechanical Systems and Complexes

Olekcii Kotov, National University “Zaporizhzhia Polytechnic”

Doctor of Technical Sciences, Professor

Department of Military Training

Sviatoslav Vyshnevsʹkyy, Vinnytsia National Technical University

PhD, Associate Professor

Department of Electrical Power Stations and Systems

References

  1. Renewables 2025 Global Status Report (2025). REN21 Secretariat. Available at: https://www.ren21.net/gsr-2025/downloads/pdf/go/GSR_2025_GO_2025_Full_Report.pdf
  2. Motyka, M., Keefe, T. L., Hardin, K., Amon, C. (2024). 2025 renewable energy industry outlook. Deloitte Insights. Available at: https://www.deloitte.com/us/en/insights/industry/renewable-energy/renewable-energy-industry-outlook.html
  3. The energy transition: Where are we, really? (2024). McKinsey & Company. Available at: https://www.mckinsey.com/industries/electric-power-and-natural-gas/our-insights/the-energy-transition-where-are-we-really
  4. Bond, K., Butler-Sloss, S. (2023). The Renewable Revolution. Rocky Mountain Institute. Available at: https://rmi.org/wp-content/uploads/dlm_uploads/2023/06/rmi_renewable_revolution.pdf
  5. Zhu, Y., Raimi, D., Joiner, E., Holmes, B., Prest, B. C. (2025). Global energy outlook 2025: Headwinds and tailwinds in the energy transition. Resources for the Future. Available at: https://www.rff.org/publications/reports/global-energy-outlook-2025/
  6. Plazas-Niño, F. A., Ortiz-Pimiento, N. R., Montes-Páez, E. G. (2022). National energy system optimization modelling for decarbonization pathways analysis: A systematic literature review. Renewable and Sustainable Energy Reviews, 162, 112406. https://doi.org/10.1016/j.rser.2022.112406
  7. Volchyn, I. A., Haponych, L. S., Mokretskyy, V. O. (2022). Estimation and forecasting of carbon dioxide emissions from coal-fired thermal power plants in Ukraine. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 80–88. https://doi.org/10.33271/nvngu/2022-5/080
  8. Kim, H. (2023). Modeling a net-zero future: Energy experts harness simulation for global decarbonization. Argonne National Laboratory. Available at: https://www.anl.gov/education/modeling-a-netzero-future-energy-experts-harness-simulation-for-global-decarbonization
  9. Islam, Md. S., Khatun, Mst. S., Biswas, Md. H. A. (2024). Mathematical modelling of using renewable energy in the power sectors for the sustainable environment. Mathematical Modelling and Numerical Simulation with Applications, 4 (2), 216–237. https://doi.org/10.53391/mmnsa.1446574
  10. Sereda, B. P., Mukovska, D. Ya., Ziuzin, Ye. P., Orel, V. H. (2025). Mathematical models for optimization of the use of alternative energy sources in transport and production systems. Mathematical Modeling, 1 (52), 75–81. https://doi.org/10.31319/2519-8106.1(52)2025.330404
  11. Mokin, B. І., Shalagai, D. О., Mazuruk, O. V. (2024). Synthesis of Mathematical Models of the Process of Recovery and Development of Sources of Renewable Energy in Ukraine Close to the Realities of Today’s Warfare. Visnyk of Vinnytsia Politechnical Institute, 172 (1), 17–24. https://doi.org/10.31649/1997-9266-2024-172-1-17-24
  12. Kuznietsov, M. P. (2017). Construction of a mathematical model of electricity consumption mode. Vidnovluvana energetika, 4, 33–42. Available at: http://jnas.nbuv.gov.ua/article/UJRN-0000970781
  13. Protashchyk, O. V. (2018). Informatsiine zabezpechennia ekonomiko-matematychnoi modeli rozvytku enerhokompleksu Ukrainy. [Master's dissertation; Natsionalnyi tekhnichnyi universytet Ukrainy “Kyivskyi politekhnichnyi instytut imeni Ihoria Sikorskoho”].
  14. Barylo, A. A., Benmenni, M., Budko, V. I., Budko, M. O., Vasko, P. F., Holovko, V. M. et al.; Kudria, S. O. (Ed.) (2020). Vidnovliuvani dzherela enerhii. Kyiv: Instytut vidnovliuvanoi enerhetyky NAN Ukrainy, 392. Available at: https://www.ive.org.ua/wp-content/uploads/Monografia_final_21.12.2020.pdf
  15. Hrytsiuk, I., Volynets, V., Hrytsiuk, Y., Bandura, I., Komenda, N. (2025). Prospects for the integration of distributed energy sources into the Ukrainian power grid. Machinery & Energetics, 16 (1), 130–145. https://doi.org/10.31548/machinery/1.2025.130
  16. Fedorchuk, S. O. (2019). Zabezpechennia zaiavlenykh hrafikiv heneratsii vidnovliuvanykh dzherel enerhii na osnovi kontseptsii virtualnykh elektrychnykh stantsii. [PhD dissertation; Natsionalnyi tekhnichnyi universytet “Kharkivskyi politekhnichnyi instytut”].
  17. Honcharov, Ye., Benmenni, M. (2021). Modeliuvannia prohnozuvannia perekhodu Ukrainy na 100 % VDE do 2070 roku. Vidnovliuvana enerhetyka ta enerhoefektyvnist u XXI stolitti. ХХІІ Mizhnarodna naukovo-praktychna konferentsiia. Kyiv: Instytut vidnovliuvanoi enerhetyky NAN Ukrainy, 274–278. Available at: https://ela.kpi.ua/items/f4f0b9da-710b-4471-8f4d-ffe62e0406ce
  18. Zvit 3/ Zvit z modeliuvannia (2022). Instytut ekonomiky ta prohnozuvannia NAN Ukrainy. Yevropeiskyi bank rekonstruktsii ta rozvytku, 138. Available at: https://mepr.gov.ua/wp-content/uploads/2022/11/Rezultaty-modelyuvannya.pdf
  19. Kupchak, V. R., Pavlova, O. M., Pavlov, K. V., Lahodiienko, V. V. (2019). Formuvannia ta rehuliuvannia rehionalnykh enerhetychnykh system: teoriia, metodolohiia ta praktyka. Lutsk: SPD Hadiak Zhanna Volodymyrivna, drukarnia “Volynpolihraf”, 346. Available at: https://files.znu.edu.ua/files/Bibliobooks/Inshi73/0053830.pdf
  20. Pro zatverdzhennia Kodeksu systemy peredachi (2018). Postanova No 309. 14.03.2018. Available at: https://zakon.rada.gov.ua/go/v0309874-18
  21. Castro, J. F. C., Marques, D. C., Tavares, L., Dantas, N. K. L., Fernandes, A. L., Tuo, J., et al. (2022). Energy and Demand Forecasting Based on Logistic Growth Method for Electric Vehicle Fast Charging Station Planning with PV Solar System. Energies, 15 (17), 6106. https://doi.org/10.3390/en15176106
  22. Target compliance and benchmark (2024). ENTSO-E. Available at: https://2024.entsos-tyndp-scenarios.eu/target-compliance-and-benchmark/
  23. Joint Stock Company “Vinnytsiaoblenergo”. Available at: https://www.voe.com.ua
  24. Indicator 7.1.1Generation of power. State Statistics Service of Ukraine. Available at: https://sdg.ukrstat.gov.ua/uk/7-1-1
  25. Diachuk, O., Chepeliev, M., Podolets, R., Trypolska, H., Venher, V., Saprykina, T. et al.; Oharenko, Yu., Aliieva, O. (Eds.) (2017). Perekhid Ukrainy na vidnovliuvanu enerhetyku do 2050 roku. Kyiv: Vyd-vo TOV “ART KNYHA”, 88. Available at: https://energytransition.in.ua/wp-content/uploads/2018/11/Perehid-Ukrainy-na-vidnovlyuvanu-energetuky-do-2050_zvit.pdf
  26. Khvorov, M. M., Hryvkivska, O. V. (2020). Novyi zelenyi perekhid “European Green Deal” v Yevropi ta Ukraini. Naukovo-praktychni ekonomichni kontseptsii ta prohramy, 4. Available at: https://irback.e-u.edu.ua/server/api/core/bitstreams/5d3726f8-9a17-4257-b9c1-88acdccc93e0/content
  27. Hurochkina, V., Kohut, S. (2023). Formation of the energy balance of Ukraine using renewable energy sources. Economy, finances, management: Topical issues of science and practice, 4 (66), 109–133. https://doi.org/10.37128/2411-4413-2023-4-8
  28. The largest database of open data about energy of Ukraine. Energy Map. Available at: https://map.ua-energy.org/uk/
Development of a logistic model for energy transition to renewable energy sources with energy security consideration

Downloads

Published

2025-10-30

How to Cite

Zhukov, O., Boiko, S., Koval, A., Kotov, O., & Vyshnevsʹkyy, S. (2025). Development of a logistic model for energy transition to renewable energy sources with energy security consideration. Technology Audit and Production Reserves, 5(1(85), 63–69. https://doi.org/10.15587/2706-5448.2025.340373

Issue

Section

Technology and System of Power Supply