Increasing the viability of thermally loaded detector array




operability, reliability, thermally loaded elements, signal, interpolation


The causes of distortion of the laser beam as it passes through the atmospheric channel are presented. It is shown that for industrial lasers used for cutting of materials, beam spreading reduces the density of the power distribution across the beam, which changes the nature of radiation interaction with the processed surface. Control by density distribution over the cross section of the radiation beam is an actual problem that improves the quality of processing of the material and reduces the required energy.

It is noted that the control system of the laser power density distribution containing matrix power meter with thermoelectric coolers, thermal control receivers when measure high radiation intensities, have significantly lower values of reliability, since the failure rate depends on the thermal load and decreases by orders of magnitude compared to rated load. Failure of the matrix element leads to the formation of incorrect control to the executive body of the change in the shape of the laser beam.

It is analyzed an approach to increase the viability of the matrix thermally loaded detector based on the dependence of the response elements of the matrix and its environment, that allow to ensure the correct reaction of control system in case of failure of the elements of perception of input information. The model means providing a visual representation of the results are developed. It is shown that the information methods can improve the viability of the system.

Author Biography

Анна Арнольдовна Гнатовская, Odessa state environmental university, Lvovskaya st., 15, Odessa, Ukraine, 65016

Candidate of Technical Sciences, Associate Professor,

Department of Informatics


  1. Vorontsov, M. A., Shmal'gauzen, V. I. (1985). Printsipy adaptivnoi optiki. M.: Nauka, 336.
  2. Gudmen, J. (1970). Vvedenie v Fur'e-optiku. M.: Mir, 364.
  3. Redi, J. (1981). Promyshlennoe primenenie lazerov. M.: Mir, 640.
  4. Kazanskii, N. L., Murzin, S. P., Mezhenin, A. V., Osetrov, E. A. (2008). Formirovanie lazernogo izlucheniia dlia sozdaniia nanorazmernyh poristyh struktur materialov. Komp'iuternaia optika, 32 (3), 246–248.
  5. Voskoboev, V. F. (2008). Nadezhnost' tehnicheskih sistem i tehnogennyi risk. Chast' 1. Nadezhnost' tehnicheskih sistem. M.: ID "Al'ians", "Put'", 200.
  6. Murzin, S. P., Tregub, V. I., Mezhenin, A. V., Osetrov, E. L. (2008). Lazernoe nano strukturirovanie metallicheskih materialov s primeneniem podvizhnyh fokusatorov izlucheniia. Komp'iuternaia optika, 32 (4), 353-356.
  7. Meshcheriakov, V. I. (2003). Mnogoelementnyi piroelektricheskii priemnik IK-izlucheniia. Holodil'naia tehnika i tehnologiia, 4 (84), 77-80.
  8. Kokodii, N. G., Pak, A. O. (2009). Algoritmy obrabotki signala s reshetchatogo priemnika dlia izmereniia harakteristik lazernogo izlucheniia. Vіsnik Harkіvs'kogo natsіonal'nogo unіversitetu. Radіofіzika ta elektronіka, 853, 37–44.
  9. Meshcheriakov, V. I., Hudenko, N. P. (2003). Vzaimodeistvie intensivnogo impul'snogo izlucheniia s piroelektricheskimi priemnikami. Vіsnik Odes'kogo derzhavnogo unіversitetutu, 8 (2), 248–255.
  10. Meshcheriakov, V. I., Novichenko, A. S. (1990). Piroelektricheskii shirokodiapazonnyi preobrazovatel' moshchnosti IK-izlucheniia. Opticheskie datchiki fizicheskih velichin. Kishinev, 19–20.
  11. Meshcheriakov, V. I., Sbahi, A. (2009). Povyshenie nadezhnosti piroelektricheskih priemnikov intensivnogo lazernogo izlucheniia. Elektromashinobuduvannia ta elektroobladnannia, 72, 116-119.
  12. DiSalvo, F. J. (1999, July 30). Thermoelectric Cooling and Power Generation. Science, Vol. 285, № 5428, 703–706. doi:10.1126/science.285.5428.703
  13. Bell, L. E. (2008, September 12). Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science, Vol. 321, № 5895, 1457–1461. doi:10.1126/science.1158899
  14. Sootsman, J. R., Chung, D. Y., Kanatzidis, M. G. (2009, November 2). New and Old Concepts in Thermoelectric Materials. Angewandte Chemie International Edition,Vol. 48, № 46, 8616–8639. doi:10.1002/anie.200900598
  15. Zebarjadi, M., Esfarjani, K., Dresselhaus, M. S., Ren, Z. F., Chen, G. (2012). Perspectives on thermoelectrics: from fundamentals to device applications. Energy & Environmental Science, Vol. 5, № 1, 5147-5162. doi:10.1039/c1ee02497c
  16. Brown, S. R., Kauzlarich, S. M., Gascoin, F., Snyder, G. J. (2006, April). Yb 14 MnSb 11 : New High Efficiency Thermoelectric Material for Power Generation. Chemistry of Materials, Vol. 18, № 7, 1873–1877. doi:10.1021/cm060261t
  17. Jurgensmeyer, A. L. (2011). High Efficiency Thermoelectric Devices Fabricated Using Quantum Well Confinement Techniques. Colorado State University, 54.
  18. Wereszczak, A. A., Wang, H. (2011, May 11). Thermoelectric Mechanical Reliability. Vehicle Technologies Annual Merit Reviewand Peer Evaluation Meeting. Arlington, 18.
  19. Zaikov, V. P., Meshcheriakov, V. I., Gnatovskaia A. A. (2011). Influence of thermal loading on indicators of reliability of the two-cascade thermoelectric cooling devices. Eastern-European Journal Of Enterprise Technologies, 4(9(52)), 34-38. Available:
  20. Meshcheriakov, V. I., Zaikov, V. P., Hnatovska, H. A. (25.05.2012). Sposib vyznachennia pokaznykiv nadiinosti termoelektrychnoho okholodzhuvacha i prystrii dlia yoho realizatsii. Patent na vynakhid № 98594. Appl. 25.05.2012; Biul. № 10. Available:



How to Cite

Гнатовская, А. А. (2015). Increasing the viability of thermally loaded detector array. Technology Audit and Production Reserves, 1(2(21), 60–63.



Information Technologies: Original Research