Construction of hybrid autonomous and backup power supply for complex solar systems

Authors

  • Валерій Юрійович Єрохов Lviv Polytechnic National University, Bandera Str., 12, Lviv, Ukraine, 79013, Ukraine https://orcid.org/0000-0002-9699-7110
  • Анатолій Олександрович Дружинін Lviv Polytechnic National University, Bandera Str., 12, Lviv, Ukraine, 79013, Ukraine https://orcid.org/0000-0002-4854-3464
  • Ольга Валерієвна Єрохова Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine, 3-b, Naukova Str., 79060, Lviv, Ukraine https://orcid.org/0000-0002-0969-3179

DOI:

https://doi.org/10.15587/2312-8372.2015.41412

Keywords:

microcontroller unit, solar cell, autonomous power supply system, photoelectric converter

Abstract

The perspective hybrid autonomous and reserve power supply system, which is used in a complex heliosystems was developed by using of renewable energy sources in the form of photovoltaic panels, rechargeable batteries, charge controller and inverter, that converts the low-voltage constant current 12-24 V to the consumer standard ~ 220 V. This hybrid system was used in a complex heliosystems (in the case of unstable lighting – the solar panels on the roof and walls simultaneously are disposed or on the East - West are disposed etc.).

Optimization (replacement) of the solar controller is the first step to the power generation increase by solar batteries, without solar panels adding. The most effective model of microcontroller unit for construction of a hybrid autonomous and emergency power supply system was investigated and developed by using of a Pulse-Width Modulation (PWM), as well as the solar battery Maximum Power Point Tracking (MPPT), which are used in a complex heliosystems maximum performance set up.

This paper also consider the possibility to use of “intelectual” microcontrollers as control elements of microcontroller block to build an effective model of hybrid power supply system microcontroller unit for it maximum productivity setup. Microcontrollers with the MPPT technology of maximum power point tracking show a considerable advantages over other types of microcontroller block, such as low power microcontroller MPT612 with 32-bit RISC-processor ARM7TDMI-S.

Author Biographies

Валерій Юрійович Єрохов, Lviv Polytechnic National University, Bandera Str., 12, Lviv, Ukraine, 79013

Doctor of Technical Sciences, Associate Professor

Department of Semiconductor Electronics 

Анатолій Олександрович Дружинін, Lviv Polytechnic National University, Bandera Str., 12, Lviv, Ukraine, 79013

Doctor of Technical Sciences, Professor

Department of Semiconductor Electronics 

Ольга Валерієвна Єрохова, Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine, 3-b, Naukova Str., 79060, Lviv

Graduate student

References

  1. Huang, Y. M., Ma, Q. L., Meng, M., Zhai, B. G. (2010, November). Porous Silicon Based Solar Cells. Materials Science Forum, 663-665, 836–839. doi:10.4028/www.scientific.net/msf.663-665.836
  2. Yerokhov, V. Yu. (2008, September). Porous coating of silicon substrate for solar energy converter. Book of Abstracts of International Conference SolPol. Warsaw, Poland, 23.
  3. Shimizu, T., Hashimoto, O., Kimura, G. (2003, March). A novel high performance utility-interactive photovaltaic inverter system. IEEE Transaction on Industrial Electronics, 18 (2), 704-711. doi:10.1109/tpel.2003.809375
  4. Yerokhov, V. Yu., Selemonavichus, A. A.; National University "Lviv Polytechnic". (10.11.2008). Sposib oderzhannia poverkhnevoi multytekstury. Patent Ukrainy № 36642, MPK H01L 31/05. Appl. № a200713213 from 27.11.2007; Bul. № 21. Available: http://uapatents.com/3-36642-sposib-oderzhannya-poverkhnevo-multiteksturi.html
  5. Yerokhov, V. Yu., Druzhynin, A. O.; National University "Lviv Polytechnic". (27.12.2010). Sposib oderzhannia poverkhnevoi funktsionalnoi nanotekstury. Patent Ukrainy № 92962, MPK H01L 31/05. Appl. № а200902952, from 30.03.2009; Bul. № 24. Available: http://uapatents.com/4-92962-sposib-oderzhannya-poverkhnevo-funkcionalno-nanoteksturi.html
  6. Shmilovich, D. (2005). On the control of the photovoltaic maximum power point tracker via output parameters. IEE Proceeding. Electric Power Application, 152 (2), 239-248. doi:10.1049/ip-epa:20040978
  7. Salas, V., Alonso-Abella, M., Olías, E., Chenlo, F., Barrado, A. (2007, May). DC current injection onto the network from PV onverter of <5kW for low-voltage small grid-connected PV systems. Solar Enegy Materials And Solar Cells, 91 (9), 801-806. doi:10.1016/j.solmat.2006.12.016
  8. Salas, V., Alonso-Abellá, M., Chenlo, F., Olías, E. (2009, November). Analysis of the maximum power point tracking in the photovaltaic grid invertor of 5kW. Renewable Energy, 34 (11), 2366-2372. doi:10.1016/j.renene.2009.03.012
  9. Sera, D., Kerekes, T., Teodorescu, R., Blaabjerg, F. (2006, July). Improved MPPT algogithms for rapidly changing environmental conditions. Proceeding of IEEE International Symposium of Industrial Electronics, 2, 1420-1425. doi: 10.1109/isie.2006.295680
  10. Solodovnik, E. V., Liu, S., Dougal, R. A. (2004, September). Power Controller Design for Maximum Power Tracking in Solar Installations. IEEE Transaction on Power Electronics, 19 (5), 1295-1304. doi:10.1109/tpel.2004.833457
  11. Roman, E., Alonso, R., Ibanez, P., Elorduizapatarietxe, S., Goitia, D. (2006, June). Intelligent PV Module for Grid-Connected PV Systems. IEEE Transaction for Industrial Electronics, 53 (4), 1066-1073. doi:10.1049/ip-epa:20040978

Published

2015-04-02

How to Cite

Єрохов, В. Ю., Дружинін, А. О., & Єрохова, О. В. (2015). Construction of hybrid autonomous and backup power supply for complex solar systems. Technology Audit and Production Reserves, 2(1(22), 33–38. https://doi.org/10.15587/2312-8372.2015.41412