Applications of photonic crystal fibers in navigation

Authors

DOI:

https://doi.org/10.15587/2312-8372.2015.41416

Keywords:

photonic crystal fiber, Sagnac effect, fiber optical gyroscope, conventional fibers

Abstract

Hollow core photonic crystal fibers are inhomogeneous dielectric media with periodic variation of the refractive index. In general, photonic crystals have a photonic band gap. In this paper we proposed to use of a hollow core photonic crystal fiber 1550 nmλ, Ø 10 µm in optical gyroscope. A signal is launched into the fiber in both directions of the loop, i. e., clockwise and counterclockwise, where the optical path length would nominally be the same; however, the Sagnac effect results in a difference in the optical path lengths when the system undergoes rotation. By detecting the two signals on the receive end and combining them, the interference and corresponding phase shift can be related to an angular rotation the interference pattern measured photometrically.

Author Biography

Haider Ali Muse, Kharkiv National University of Radio Electronics, Lenina ave., 14, Kharkiv, 61000

Postgraduate student

Department of Physical Foundations of Electronic Engineering

References

  1. Kirkendall, C. K., Dandridge, A. (2004, September 3). Overview of high performance fibre-optic sensing. Journal of Physics D: Applied Physics, Vol. 37, № 18, 197–216. doi:10.1088/0022-3727/37/18/r01
  2. Chau, Y.-F., Liu, C.-Y., Yeh, H.-H., Tsai, D. P. (2010). A comparative study of high birefringence and low confinement loss photonic crystal fiber employing elliptical air holes in fiber cladding with tetragonal lattice. Progress In Electromagnetics Research B, 22, 39–52. doi:10.2528/pierb10042405
  3. Dong, X., Tam, H. Y., Shum, P. (2007). Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer. Applied Physics Letters, 90 (15), 151113. doi:10.1063/1.2722058
  4. Dudley, J. M., Taylor, J. R. (2009). Ten years of nonlinear optics in photonic crystal fibre. Nature Photon, 3 (2), 85–90. doi:10.1103/physrevlett.67.2295
  5. Yablonovitch, E., Gmitter, T., Leung, K. (1991, October). Photonic band structure: The face-centered-cubic case employing nonspherical atoms. Physical Review Letters, 67 (17), 2295–2298. doi:10.1103/physrevlett.67.2295
  6. Birks, T. A., Knight, J. C., Russell, P. S. J. (1997). Endlessly single-mode photonic crystal fiber. Optics Letters, 22 (13), 961-963. doi:10.1364/ol.22.000961
  7. Shinde, Y. S., Gahir, H. K. (2008). Dynamic Pressure Sensing Study Using Photonic Crystal Fiber: Application to Tsunami Sensing. IEEE Photonics Technology Letters, 20 (4), 279–281. doi:10.1109/lpt.2007.913741
  8. Mangan, B. J., Farr, L., Langford, A., Roberts, P. J., Williams, D. P., Couny, F., Lawman, M., Mason, M., Coupland, S., Flea, R., Sabert, H., Birks, T. A., Knight, J. C., Russell, P. S. J. (2004). Low loss (1.7 dB/km) hollow core photonic bandgap fiber. In: Optical Fiber Communication Conference. Available: http://opus.bath.ac.uk/8940/
  9. Kumar, V. V. R., George, A., Reeves, W., Knight, J., Russell, P., Omenetto, F., Taylor, A. (2002). Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Optics Express, 10 (25), 1520-1525. doi:10.1364/oe.10.001520
  10. Cregan, R. F. (1999, September 3). Single-Mode Photonic Band Gap Guidance of Light in Air. Science, 285 (5433), 1537–1539. doi:10.1126/science.285.5433.1537
  11. Payne, F. P., Lacey, J. P. R. (1994, October). A theoretical analysis of scattering loss from planar optical waveguides. Optical and Quantum Electronics, 26 (10), 977–986. doi:10.1007/bf00708339
  12. Miya, T., Terunuma, Y., Hosaka, T., Miyashita, T. (1979). Ultimate low-loss single-mode fibre at 1.55 μm. Electronics Letters, 15 (4), 106-108. doi:10.1049/el:19790077
  13. Jiang, X., Euser, T. G., Abdolvand, A., Babic, F., Tani, F., Joly, N. Y., Travers, J. C., Russell, P. S. J. (2011). Single-mode hollow-core photonic crystal fiber made from soft glass. Optics Express, 19 (16), 15438-15444. doi:10.1364/oe.19.015438
  14. Jha, R., Villatoro, J., Badenes, G. (2008). Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing. Applied Physics Letters, 93 (19), 191106:1–191106:3. doi:10.1063/1.3025576
  15. Cárdenas-Sevilla, G. A., Finazzi, V., Villatoro, J., Pruneri, V. (2011). Photonic crystal fiber sensor array based on modes overlapping. Optics Express, 19 (8), 7596–7602. doi:10.1364/oe.19.007596
  16. Zhang, Y., Li, Y., Wei, T., Lan, X., Huang, Y., Chen, G., Xiao, H. (2010). Fringe Visibility Enhanced Extrinsic Fabry–Perot Interferometer Using a Graded Index Fiber Collimator. IEEE Photonics Journal, 2 (3), 469–481. doi:10.1109/jphot.2010.2049833
  17. Tuchin, V. V., Skibina, Ju. S., Beloglazov, V. I. et. al. (2008). Sensornye svojstva fotonno-kristallicheskogo volnovoda s poloj serdcevinoj. Pis'ma v ZhTF, 34 (15), 63–69.
  18. Russell, P. J. (2006). Photonic-Cristal Fibers. Journal of Lightwave technology, 24 (12), 4729–4749.
  19. Fedotov, A. B., Kononov, S. O., Koletovatova, O. A. et. al. (2003). Volnovodnye svojstva i spektr sobstvennyh mod polyh fotonno-kristallicheskih volokon. Kvantovaja jelektronika, 33 (3), 271–274.
  20. Chen, W., Lou, S., Wang, L., Jian, S. (2010, September 1). Ring-core photonic crystal fiber interferometer for strain measurement. Optical Engineering, 49 (9), 094402. doi:10.1117/1.3488045
  21. Mogilevtsev, D., Birks, T. A., Russell, P. S. J. (1999). Localized function method for modeling defect modes in 2-D photonic crystals. Journal of Lightwave Technology, 17 (11), 2078–2081. doi:10.1109/50.802997

Downloads

Published

2015-04-02

How to Cite

Ali Muse, H. (2015). Applications of photonic crystal fibers in navigation. Technology Audit and Production Reserves, 2(1(22), 43–47. https://doi.org/10.15587/2312-8372.2015.41416