Plasmatron for ion-plasma surface of glass treatment at atmospheric pressure

Authors

DOI:

https://doi.org/10.15587/2312-8372.2015.42077

Keywords:

plasmatron, glass, implementation material, modification of the surface, coating

Abstract

Main mass of glass processing research is devoted to vacuum methods and to creation of non-penetrating coatings that are subject to physical and chemical impact. Therefore, the development of plasma devices that improve the efficiency of processing through the organization process at atmospheric pressure is an actual problem. The article suggests construction and studies operation modes of DC-arc plasmatron, which eliminates the need for powder coating material of a specific particle size, allows using as source material of introduction aqueous solutions of salts and increases the effective utilization of the implementation material at surface treatment of the glass. In view of the construction features of the developed plasmatron and its working conditions, as well as the weak dependence of the voltage of the electric arc on the Knudsen criterion (complex pd) a simplified equation of the current-voltage characteristics is proposed. The calculation of the current-voltage characteristics of the proposed dependence is in satisfactory agreement with the experimental data. The coefficient of efficiency of the developed plasmatron is 63 ... 80 %.

Author Biography

Александр Анатольевич Шрам, Zaporizhzhya National Technical University, Zhukovskogo 64, Zaporizhzhya, Ukraine, 69063

Candidate of Technical Science, Associate Professor

Department of power supply of industrial enterprises

References

  1. Chen, F. F., Chang, J. P. (2002). Principles of plasma processing. Los Angeles: Plenum/Kluwer Publishers, 249.
  2. Dresvin, S. V., Donskoi, A. V., Gol'dfarb, V. M., Klubnikin, V. S.; In: Dresvina, S. V. (1972). Fizika i tehnika nizkotemperaturnoi plazmy. M.: Atomizdat, 352.
  3. Dziuba, V. L., Korsunov, K. A. (2007). Fizika, tehnika i primenenie nizkotemperaturnoi plazmy. Lugansk: VNU im. V. Dalia, 448.
  4. Fridman, A. (2008). Plasma Chemestry. Cambridge: Cambridge University Press, 1022. ISBN-13 978-0-511-39857-5.
  5. Bekrenev, N. V., Liasnikov, V. N., Trofimov, D. V.; applicant and patentee State educational institution of higher vocational education Saratov State Technical University. (10.09.2006). Sposob plazmennogo napyleniia pokrytii. Patent RF 2283364, MPK S 23 S 4/12/. Appl. 09.11.2004 № 200413266602. Available: http://www.freepatent.ru/patents/2283364
  6. Topolianskii, P. A. (2005). Plazmennoe nanesenie toknoplenochnyh pokrytii na instrument i tehnologicheskuiu osnastku pri atmosfernom davlenii. Svarka v Sibiri, 1 (13), 63–66.
  7. Topolianskii, P. A. (2004). Issledovanie ionno-plazmennyh iznosostoikih pokrytii na instrumental'nyh staliah. Metalloobrabotka, 1 (19), 24–30.
  8. Krohin, V. P., Bessmertnyi, V. S., Panasenko, V. A. et al. (1999). Dekorirovanie stekla i izdelii iz nego metodom plazmennogo napyleniia. Steklo i keramika, 3, 12–14.
  9. Avdeev, I. V., Lushchin, S. P., Shram, A. A. (2009). Modifikatsiia poverhnosti silikatnogo stekla ionno-plazmennoi obrabotkoi. Fizika i himiia obrabotki materialov, 2, 54–57.
  10. Avdeev, I. V., Shram, A. A., Malyshko, S. E., Vyhovanets, V. V. (2005). Sposob poverhnostnoi modifikatsii stekla i stekloizdelii. Deklaratsionnyi patent na poleznuiu model' № 11329, S 03 S 17/06. Bul. № 12.

Published

2015-05-28

How to Cite

Шрам, А. А. (2015). Plasmatron for ion-plasma surface of glass treatment at atmospheric pressure. Technology Audit and Production Reserves, 3(1(23), 31–34. https://doi.org/10.15587/2312-8372.2015.42077