Present concepts of non-traditional methods of growing of metal whisker crystals. Pulling of whiskers from solution

Authors

  • Сергей Робленович Артемьев National University of Civil Defense of Ukraine, str. Chernyshevsky, 94, Kharkov, Ukraine, 61000, Ukraine https://orcid.org/0000-0002-9086-2856

DOI:

https://doi.org/10.15587/2312-8372.2015.42409

Keywords:

whisker crystals, growing methods, metal "whiskers", growing from solutions, passivating impurities

Abstract

The material of articles were reviewed and analyzed the results of previous studies of whisker crystals on non-traditional growing methods, namely, one of them – the "pull" of metal whiskers from solutions. Analysis of published data shows that the problem in modern conditions given enough attention to that, no doubt, talking about the relevance of the research topic and, therefore, these issues need to be addressed. The results of this analysis show that if prepared solution at a certain temperature is rapidly cooled to a lower temperature, there appear corresponding metal whiskers. The whiskers begin to appear again after the completion of the main stage of crystallization and if it begins to lower the temperature, the amount of the crystal needles will gradually increase. Reaching a certain "threshold overflow" volume growth of whisker crystals becomes an avalanche, and then almost stopped, at the final stage it is appeared whisker curled in a spiral around the axis of growth. The growth of whiskers of metal salts by rapid cooling of saturated solutions occurs at dislocations occurring on the particles of impurities. It is only stopped after the complete drying following solutions. The spectrum of use of whisker crystals in modern industry is expanded, so keeping and use of research will improve the implementation of environmental requirements for the protection of human health and environment.

Author Biography

Сергей Робленович Артемьев, National University of Civil Defense of Ukraine, str. Chernyshevsky, 94, Kharkov, Ukraine, 61000

Candidate of Technical Sciences, Associate Professor

Department of Occupational Safety and technogenic and ecological security 

References

  1. Givargizov, E. I. (1977). Rost nitevidnyh i plastinchatyh kristallov iz para. M.: Nauka, 304.
  2. Berezhkova, G. V. (1969). Nitevidnye kristally. M.: Gosizdat, 158.
  3. Syrkin, V. G. (1983). Karbonily metallov. M.: Himiia, 200.
  4. Gribov, B. G., Domrachev, G. A., Zhuk, B. V. (1981). Osazhdenie plenok i pokrytii razlozheniem metalloorganicheskih soedinenii. M.: Nauka, 322.
  5. Gabor, B., Blocher, V. (1969). Blocher Neposredstvenno nabliudaemyi pod mikroskopom rost zheleznyh viskerov, himicheski vyrashchivaemyh iz gazovoi fazy. J. Apple. Phys., № 7, 224-226.
  6. Ivanova, V. S., Gordenko, L. K. (1964). Novye puti povysheniia prochnosti metallov. M.: Nauka, 118.
  7. Postnikov, V. S. (1975). Nitevidnye kristally i tonkie plenki. Materialy II Vsesoiuznoi nauch. konf. "Nitevidnye kristally". Voronezh: VPI, 577.
  8. Nitevidnye kristally dlia novoi tehniki. (1979). Materialy III Vsesoiuznoi nauch. konf. Voronezh: VPI, 231.
  9. Ammer, S. A., Postnikov, V. S. (1974). Nitevidnye kristally. Voronezh. politeh. instit., 284.
  10. Shishelova, T. I., Stepanova, N. E., Plynskaia, D. A., Beliaeva, M. A. (2009). Nitevidnye kristally. Uspehi sovremennogo estestvoznaniia, № 8, 12-13.
  11. Pomerantseva, E. A., Kozlova, M. G., Leonova, L. S., Dobrovol'skii, Yu. A., Kulova, T. L., Skundin, A. M., Gudilin, E. A., Tret'iakov, Yu. D. (2007). Nitevidnye kristally. Materialy Vserossiiskoi konferentsii «Issledovaniia i razrabotki po prioritetnomu napravleniiu razvitiia nauki, tehnologii i tehniki «Industriia nanosistem i materialy», 18-19 ianvaria 2007 goda, g. Moskva. Mezhdunarodnyi nauchnyi zhurnal «Al'ternativnaia energetika i ekologiia», № 1 (45), 126-127.
  12. Gyulai, Z. Z. (1954). Phys., № 138, 317.
  13. Gordon, J. E. (1960). Brit. Commune and Electronics, № 7, 182.
  14. Gordon, J. E. (1964). Endeavour, № 23, 8.
  15. Newkirk, J. B., Sears, G. W. (1955, January). Growth of potassium halide crystals from aqueous solution. Acta Metallurgica, Vol. 3, № 1, 110–111. doi:10.1016/0001-6160(55)90031-6
  16. Gyulai, Z. (1959, December). Kristallkeimbeobachtungen in Wässerigen KBr- und NaCl-Lösungen. Acta Physica, Vol. 10, № 4, 371–388. doi:10.1007/bf03159823
  17. Yamamoto, S. (1960). Science reports of the Research Institutes, Tohoku University, Ser 1, 107.
  18. Sears, G. (1955, July). A growth mechanism for mercury whiskers. Acta Metallurgica, Vol. 3, № 4, 361–366. doi:10.1016/0001-6160(55)90041-9
  19. Nadgornyi, E. M., Osip'ian, Yu. A., Perkas, M. D., Rozenberg, V. M. (1959). UNF, № 67, 625.
  20. Berezhkova, G. V. (1964). Dissertatsiia doktora himicheskih nauk. M., 168.
  21. Amelincks, S. J. (1958). Appl. Phys., № 29, 1610.
  22. Mattthai, G. O., Syrbe, G. (1957). Naturforsch, № 12a, 174.
  23. Sears, G. W. (1957). Fibrous Growth of NaClO3. The Journal of Chemical Physics, Vol. 26, № 6, 1549. doi:10.1063/1.1743578
  24. Evans, C. C., Marsh, D. M. (1964). Rept. Cambridge, № 55.
  25. Westwood, A. R. C., Rubin, H. (1962). Etch-Tunnels in Lithium Fluoride Crystals. Journal of Applied Physics, Vol. 33, № 6, 2001. doi:10.1063/1.1728881
  26. Esenski, B., Hartmann, E. (1962). Nekotorye zamechaniia o roste i mehanicheskih svoistvah nitevidnyh kristallov NaCl. Kristallografiia, Vol. 7, 433-436.
  27. Berezhkova, G. V., Rozhanskii, V. N. (1963). K voprosu o mehanizmah rosta ionnyh nitevidnyh kristallov iz rastvorov. Kristallografiia, Vol. 8, 420-426.
  28. Sears, G. W. (1958, August). Strength of lithium fluoride whiskers. Journal of Physics and Chemistry of Solids, Vol. 6, № 2-3, 300–301. doi:10.1016/0022-3697(58)90109-4
  29. Doremus, R. H., Roberts, B. W., Turnbull, D. (1958). Growth and perfection of crystals. New York: Wiley, 609.
  30. Lider, V. V., Berezhkova, G. V., Rozhanskii, V. N. (1963). Fizika tverdogo tela, № 5, 1479.

Published

2015-05-28

How to Cite

Артемьев, С. Р. (2015). Present concepts of non-traditional methods of growing of metal whisker crystals. Pulling of whiskers from solution. Technology Audit and Production Reserves, 3(4(23), 8–12. https://doi.org/10.15587/2312-8372.2015.42409

Issue

Section

Technology organic and inorganic substances