Methods and algorithms for compact representation of graphic information in computer systems

Authors

DOI:

https://doi.org/10.15587/2312-8372.2015.43330

Keywords:

lossy compression, lossless compression, graphics, compression-decompression method, algorithm

Abstract

Considering that a large amount of information, that transmitted in digital communication systems, accounts for graphic information, the development and improvement of methods and algorithms for compact representation of image data are very topical task.

This paper shows the results of the study process of compact presentation of graphic information in computer systems, namely:

−    the basic methods of compact presentation of graphic information are considered. There are Gray reflex codes, progressive image compression, intuitive methods, JPEG, JPEG-LS, wavelet techniques, a mathematical transformation of the image;

−    the main indicators of algorithms for compact presentation of graphic information are considered. There are RLE, LZW, Huffman algorithm, JBIG, JPEG, Lossless JPEG, fractal algorithm, recursive algorithm, JPEG 2000;

−    advantages and disadvantages of methods and algorithms are revealed;

−    system analysis of opportunities for basic methods and algorithms for compression of graphical information is given.

Investigated in the article impact of using combinations of methods of compact presentation of graphic information in computer systems at the results of the major compression algorithms will identify further ways to improve the degree of compression of graphic information.

Author Biography

Ярослав Васильович Корпань, Cherkassy State Technological University, bul. Shevchenko, 460, Cherkassy, Ukraine, 18006

Candidate of Technical Science, Associate Professor

Department of specialized computer technology

References

  1. Nechiporenko, O. V., Mitsenko, S. A. (2014). Sistemnyi analiz i otsenka metodov szhatiia dannyh dlia baz dannyh lazernyh tehnologicheskih kompleksov. Vіsnik Hmel'nits'kogo natsіonal'nogo unіversitetu, № 1, 94–100.
  2. Vatolin, D., Ratushniak, A., Smirnov, M., Yukin, V. (2003). Metody szhatiia dannyh. Ustroistvo arhivatorov, szhatie izobrazhenii i video. M.: DIALOG-MIFI, 384.
  3. Selomon, D. (2004). Szhatie dannyh, izobrazhenii i zvuka. M.: Tehnosfera, 368.
  4. Salomon, D. (2007). Data Compression: The Complete Reference. Ed. 4. London: Springer-Verlag, 1092. doi:10.1007/978-1-84628-603-2
  5. Linde, Y., Buzo, A., Gray, R. (1980, January). An Algorithm for Vector Quantizer Design. IEEE Transactions on Communications, Vol. 28, № 1, 84–95. doi:10.1109/tcom.1980.1094577
  6. Stollnitz, E. J., DeRose, T. D., Salesin, D. H. (1996). Wavelets for Computer Graphics: Theory and Applications. San Francisco: Morgan Kaufmann, 245.
  7. Gonsales, R., Vuds, R. (2006). Tsifrovaia obrabotka izobrazhenii. Translation from English. Moscow: Tehnosfera, 1072.
  8. Anderson, M. (1990, October). VCR quality video at 1,5 Mbit/s. Chicago: National Communication Forum, 128.
  9. Chen, C.-T., Le Gall, D. J. (1990, January 30). A K-Th Order Adaptive Transform Coding Algorithm For Image Data Compression. Proc. SPIE 1153, Applications of Digital Image Processing XII, 7. Available: http://dx.doi.org/10.1117/12.962304
  10. Le Gall, D. J. (1992, April). The MPEG video compression algorithm. Signal Processing: Image Communication, Vol. 4, № 2, 129–140. doi:10.1016/0923-5965(92)90019-c
  11. In: Krivosheev, M. I. (1980). Tsifrovoe televidenie. M.: Sviaz', 264.

Published

2015-05-28

How to Cite

Корпань, Я. В. (2015). Methods and algorithms for compact representation of graphic information in computer systems. Technology Audit and Production Reserves, 3(2(23), 32–36. https://doi.org/10.15587/2312-8372.2015.43330