Effect of manganese compounds on synthesis of ferrates(VI)

Authors

  • Дмитрий Аркадьевич Головко Ukrainian State University of Chemical Technology, ave. Gagrina, 8, Dnipropetrovsk, Ukraine, 49005, Ukraine https://orcid.org/0000-0003-0379-083X
  • Игорь Дмитриевич Головко Ukrainian State University of Chemical Technology, ave. Gagrina, 8, Dnipropetrovsk, Ukraine, 49005, Ukraine https://orcid.org/0000-0001-5273-2818

DOI:

https://doi.org/10.15587/2312-8372.2015.43888

Keywords:

synthesis of ferrates(VI), manganese compounds, manganate pollution, determination of Mn(VI), barium ferrate

Abstract

The features of preparation processes of potassium and barium ferrates(VI) in the presence of a manganese compound contained in the feedstock are studied. It is established that manganese impurities during ferrate synthesis transferred in alkaline solution and in crystalline ferrates in the form of oxoanions MnO42−.

The influence of Mn impurities on the effectiveness of synthesis process of ferrate solutions in various ways is defined. It was revealed that product yield decreases and manganates accumulate in solution during anodic dissolution with increasing manganese content in the anode material.

It is shown that the degree of decomposition of crystalline barium ferrates during in the presence of Mn compounds more than for potassium ferrate derived from the same mother liquor. The degree of decomposition increases with increasing manganese content in solid ferrates.

It is proposed efficiently select the feedstock and include additional purification in inorganic and organic solvents in production cycle to reduce the transition of manganese compounds in the desired product.

Author Biographies

Дмитрий Аркадьевич Головко, Ukrainian State University of Chemical Technology, ave. Gagrina, 8, Dnipropetrovsk, Ukraine, 49005

Candidate of Chemical Science, Associate Professor

Department of Inorganic Substances Technology and Ecology

Игорь Дмитриевич Головко, Ukrainian State University of Chemical Technology, ave. Gagrina, 8, Dnipropetrovsk, Ukraine, 49005

Assistant

Department of Inorganic Substances Technology and Ecology

References

  1. Sharma, V. K. (2008). Ferrates: Synthesis, Properties, and Applications in Water and Wastewater Treatment. ACS Symposium Series, 524. doi:10.1021/bk-2008-0985
  2. Gan, W., Sharma, V. K., Zhang, X., Yang, L., Yang, X. (2015). Investigation of disinfection byproducts formation in ferrate(VI) pre-oxidation of NOM and its model compounds followed by chlorination. Journal of Hazardous Materials, 292, 197–204. doi:10.1016/j.jhazmat.2015.02.037
  3. Farmand, M., Jiang, D., Wang, B., Chosh, S., Ramaker, D. E., Licht, S. (2011). Super-iron nanoparticles with facile cathodic transfer. Electrochemistry communications, 13 (9), 909–912 doi:10.1016/j.elecom.2011.03.039
  4. Licht, S., Tel-Vered, R., Halperin, L. (2004). Toward Efficient Electrochemical Synthesis of Fe(VI) Ferrate and Super-Iron Battery Compounds. Journal of The Electrochemical Society, 151 (1), A31–А39. doi:10.1149/1.1630035
  5. Tiwari, D., Kim, H.-U., Choi, B.-J., Lee, S.-M., Kwon, O.-H., Choi, K.-M., Yang, J.-K. (2007, May 7). Ferrate(VI): A green chemical for the oxidation of cyanide in aqueous/waste solutions. Journal of Environmental Science and Health, Part A, 42 (6), 803–810. doi:10.1080/10934520701304674
  6. Yang, W., Wang, J., Pan, T., Cao, F., Zhang, J., Cao, C. (2004, September). Physical characteristics, electrochemical behavior, and stability of BaFeO4. Electrochimica Acta, 49 (21), 3455–3461. doi:10.1016/j.electacta.2004.03.013
  7. Licht, S., Naschitz, V., Wang, B. (2002, June). Rapid chemical synthesis of the barium ferrate super-iron Fe (VI) compound, BaFeO4. Journal of Power Sources, 109 (1), 67–70. doi:10.1016/s0378-7753(02)00041-1
  8. Veprek-Siska, J., Ettel, V. (1967). Reactions of very pure substances: Decomposition of Manganese (VII), Iron (VI) and Ruthenium (VII) oxyanions in alkaline solution. Chemistry and Industry, 1, 548–549.
  9. Toušek, J. (1962). Untersuchung der zersetzung von natriumferratlösungen. Collection of Czechoslovak Chemical Communications, 27 (4), 908–913. doi:10.1135/cccc19620908
  10. Pavlova, O. V., Belyanovskaya, Е. А., Golovko, I. D., Suprunovich, V. I., Golovko, D. A. (2010). Anodnoe povedenie ferromargantsa v kontsentrirovannyh rastvorah gidroksida natriia. Visnyk Kharkivskoho natsionalnoho universytetu, 932: Khimiia, 19 (42), 119−123
  11. Brauer, G. (1985). Rukovodstvo po neorganicheskomu sintezu. Vol. 5. M.: Mir, 360.
  12. Licht, S., Ghosh, S., Naschitz, V., Halperin, N., Halperin, L. (2001, December). Fe(VI) Catalyzed Manganese Redox Chemistry: Permanganate and Super-Iron Alkaline Batteries. The Journal of Physical Chemistry B, 105 (48), 11933–11936. doi:h10.1021/jp012178t
  13. Shilov, V. P., Gogolev, A. V. (2010, May). Oxidation of Fe(III) to Fe(VI) by ozone in alkaline solutions. Russian Journal of General Chemistry, 80 (5), 895–898. doi:10.1134/s107036321005004x
  14. Pavlova, O., Suprunovych, V., Golovko, D. (2011). Vplyv oksoanioniv manganu na stiikist luzhnykh rozchyniv natrii feratu(VI). Visnyk Lvivskoho natsionalnoho universytetu. Ser. Khimichna, 52, 217–224.
  15. Golovko, D. A., Sharma, V. K., Suprunovich, V. I., Pavlova, O. V., Golovko, I. D., Bouzek, K., Zboril, R. (2011, May). A Simple Potentiometric Titration Method to Determine Concentration of Ferrate(VI) in Strong Alkaline Solutions. Analytical Letters, 44 (7), 1333–1340. doi:10.1080/00032719.2010.511748
  16. Kanari, N., Filippova, I., Diot, F., Mochón, J., Ruiz-Bustinza, I., Allain, E., Yvon, J. (2014, January). Utilization of a waste from titanium oxide industry for the synthesis of sodium ferrate by gas–solid reactions. Thermochimica Acta, 575, 219–225. doi:10.1016/j.tca.2013.11.008

Published

2015-05-28

How to Cite

Головко, Д. А., & Головко, И. Д. (2015). Effect of manganese compounds on synthesis of ferrates(VI). Technology Audit and Production Reserves, 3(4(23), 69–73. https://doi.org/10.15587/2312-8372.2015.43888

Issue

Section

Technology organic and inorganic substances