Support of turbocompressor unit equipment heat regime by heat insulation of gas-turbine engine

Authors

  • Елена Ивановна Кирилаш National Aerospace University «Kharkiv Aviation Institute», str. Chkalova 17, Kharkiv, Ukraine, 61070, Ukraine https://orcid.org/0000-0003-2949-3577
  • Владимир Евгеньевич Костюк National Aerospace University «Kharkiv Aviation Institute», str. Chkalova 17, Kharkiv, Ukraine, 61070, Ukraine

DOI:

https://doi.org/10.15587/2312-8372.2015.44322

Keywords:

turbo-compressor unit, gas-turbine engine, fire explosion safety, thermal state, thermal insulation, modeling

Abstract

Some problems of fire explosion safety and acceptable thermal state of power units of equipment of turbo-compressor units are considered. Thermal state of the power block equipment in the presence and in the absence of external thermal insulation of body of converted gas-turbine engine is investigated by the methods of aerodynamics. Thickness of the insulation mats placed on different parts of the engine body calculated on the basis of the surface temperature, that are maximum permissible under the terms of fire explosion safety. The results showed that the coating of the engine body by thermal insulation will significantly reduce the temperature of its outer surface and small-sized equipment of power unit with a small decrease in the efficiency of the turbine and engine power, because of the additional thermal expansion of the body. The usefulness of the external thermal insulation of bodies of converted engines working in the cover of power units of turbo-compressor units requires further feasibility study.

Author Biographies

Елена Ивановна Кирилаш, National Aerospace University «Kharkiv Aviation Institute», str. Chkalova 17, Kharkiv, Ukraine, 61070

Junior Researcher

Department of aircraft engine design

Владимир Евгеньевич Костюк, National Aerospace University «Kharkiv Aviation Institute», str. Chkalova 17, Kharkiv, Ukraine, 61070

Candidate of Technical Sciences, Senior Researcher

Department of aircraft engine design

References

  1. Voronkov, S. T. (2003). Osnovnye napravleniya sovershenstvovaniya teplozashchity oborudovaniya TES. Promyshlennaya energetika, 5, 19–23.
  2. Promyshlennaya izolyatsiya ARNOLD. Available: http://www.arnoldgroup.com/3/isolierungen/isolierungen/. Last accessed 15.05.2015.
  3. Teploizolyatsionnye obolochki iSHELL. Available: http://gkflagman.com/catalog/napravlenie/?ID=1765.htm. Last accessed 15.05.2015.
  4. Rudyuk, V. (2014). Teploakusticheskaya izolyatsiya dlya obiektov neftegazovogo kompleksa. Neftegazovaya vertikal', 13-14, 14–15.
  5. Shlyapin, Ya. K. (2008). Matematicheskoe modelirovanie teplovykh rezhimov otsekov GPA. Gazovaya promyshlennost', 2, 16–19.
  6. D’Ercole, M., Biffaroni, G., Grifoni, F., Zanobini, F., Pecchi, P. (2005). Results and Experience From GE Energy’s MS5002E Gas Turbine Testing and Evaluation. Volume 4: Turbo Expo 2005, Paper No. GT2005-68053, 275-283. doi:10.1115/gt2005-68053
  7. Trusov, P. V., Charntsev, D. A. (2012). Chislennye issledovaniya protsessa ventilyatsii i teplovogo sostoyaniya shumoteplo-zashchitnykh kozhukhov gazoturbinnykh ustanovok s ispol'zovaniem parallel'nykh vychisleniy. Vychislitel'naya mekhanika sploshnykh sred, 5 (2), 208–216.
  8. Graf, E., Luce, T., Willett, F. (2005). Design Improvements Suggested by Computational Flow and Thermal Analyses for the Cooling of Marine Gas Turbine Enclosures. Volume 5: Turbo Expo 2005, Paper No. GT2005-68574, 587-593. doi:10.1115/gt2005-68574
  9. Vahidi, D., Bagheri, H., Glezer, B. (2006). Numerical and Experimental Study of Ventilation for Gas Turbine Package Enclosure. Volume 5: Marine; Microturbines and Small Turbomachinery; Oil and Gas Applications; Structures and Dynamics, Parts A and B, Paper No. GT2006-90960, 607-616. doi:10.1115/gt2006-90960
  10. Barbato, L., Blarasin, M., Rosin, S. (2008). Combined 1D and 3D CFD Approach for GT Ventilation System Analysis. Newsletter, 1, 15–18. Available: http://www.enginsoft.it/applications/oilgas/geoilgas.html. Last accessed 15.05.2015.
  11. Santon, R. C., Ivings, M. J., Pritchard, D. K. (2005). A New Gas Turbine Enclosure Ventilation Design Criterion. Volume 5: Turbo Expo 2005, Paper No. GT2005-68725, 445-452. doi:10.1115/gt2005-68725
  12. Kostyuk, V. E., Kyrylash, E. I., Kravchuk, A. L. (2013). Obobshchennaya matematicheskaya model' teplovogo sostoyaniya ukrytiy gazoturbinnykh ustanovok. Integrirovannye tekhnologii i energosbere-zhenie, 1, 22–26.
  13. Kostyuk, V. E., Kyrylash, E. Y. (2015). Teplovaia model korpusa hazoturbynnoho dvyhatelia. Intehrovani tekhnolohii ta enerhozberezhennia, 2.
  14. Launder, B. E., Spalding, D. B. (1972). Lectures in Mathematical Models of Turbulence. London: Academic Press, 169.
  15. Erikh, V. N., Rasina, M. G., Rudin, M. G. (1977). Khimiya i tekhnologiya nefti i gaza. L.: Khimiya, 424.
  16. Efremov, S. V. (2012). Proizvodstvennaya bezopasnost'. Chast' 1. Opasnye proizvodstvennye faktory. SPb: Politekhn. un-t, 223.
  17. Teploizolyatsionnye izdeliya ROTYS. Available: http://rotys.com/produkciya. Last accessed 15.05.2015.

Published

2015-05-28

How to Cite

Кирилаш, Е. И., & Костюк, В. Е. (2015). Support of turbocompressor unit equipment heat regime by heat insulation of gas-turbine engine. Technology Audit and Production Reserves, 3(1(23), 18–21. https://doi.org/10.15587/2312-8372.2015.44322