Support of turbocompressor unit equipment heat regime by heat insulation of gas-turbine engine
DOI:
https://doi.org/10.15587/2312-8372.2015.44322Keywords:
turbo-compressor unit, gas-turbine engine, fire explosion safety, thermal state, thermal insulation, modelingAbstract
Some problems of fire explosion safety and acceptable thermal state of power units of equipment of turbo-compressor units are considered. Thermal state of the power block equipment in the presence and in the absence of external thermal insulation of body of converted gas-turbine engine is investigated by the methods of aerodynamics. Thickness of the insulation mats placed on different parts of the engine body calculated on the basis of the surface temperature, that are maximum permissible under the terms of fire explosion safety. The results showed that the coating of the engine body by thermal insulation will significantly reduce the temperature of its outer surface and small-sized equipment of power unit with a small decrease in the efficiency of the turbine and engine power, because of the additional thermal expansion of the body. The usefulness of the external thermal insulation of bodies of converted engines working in the cover of power units of turbo-compressor units requires further feasibility study.References
- Voronkov, S. T. (2003). Osnovnye napravleniya sovershenstvovaniya teplozashchity oborudovaniya TES. Promyshlennaya energetika, 5, 19–23.
- Promyshlennaya izolyatsiya ARNOLD. Available: http://www.arnoldgroup.com/3/isolierungen/isolierungen/. Last accessed 15.05.2015.
- Teploizolyatsionnye obolochki iSHELL. Available: http://gkflagman.com/catalog/napravlenie/?ID=1765.htm. Last accessed 15.05.2015.
- Rudyuk, V. (2014). Teploakusticheskaya izolyatsiya dlya obiektov neftegazovogo kompleksa. Neftegazovaya vertikal', 13-14, 14–15.
- Shlyapin, Ya. K. (2008). Matematicheskoe modelirovanie teplovykh rezhimov otsekov GPA. Gazovaya promyshlennost', 2, 16–19.
- D’Ercole, M., Biffaroni, G., Grifoni, F., Zanobini, F., Pecchi, P. (2005). Results and Experience From GE Energy’s MS5002E Gas Turbine Testing and Evaluation. Volume 4: Turbo Expo 2005, Paper No. GT2005-68053, 275-283. doi:10.1115/gt2005-68053
- Trusov, P. V., Charntsev, D. A. (2012). Chislennye issledovaniya protsessa ventilyatsii i teplovogo sostoyaniya shumoteplo-zashchitnykh kozhukhov gazoturbinnykh ustanovok s ispol'zovaniem parallel'nykh vychisleniy. Vychislitel'naya mekhanika sploshnykh sred, 5 (2), 208–216.
- Graf, E., Luce, T., Willett, F. (2005). Design Improvements Suggested by Computational Flow and Thermal Analyses for the Cooling of Marine Gas Turbine Enclosures. Volume 5: Turbo Expo 2005, Paper No. GT2005-68574, 587-593. doi:10.1115/gt2005-68574
- Vahidi, D., Bagheri, H., Glezer, B. (2006). Numerical and Experimental Study of Ventilation for Gas Turbine Package Enclosure. Volume 5: Marine; Microturbines and Small Turbomachinery; Oil and Gas Applications; Structures and Dynamics, Parts A and B, Paper No. GT2006-90960, 607-616. doi:10.1115/gt2006-90960
- Barbato, L., Blarasin, M., Rosin, S. (2008). Combined 1D and 3D CFD Approach for GT Ventilation System Analysis. Newsletter, 1, 15–18. Available: http://www.enginsoft.it/applications/oilgas/geoilgas.html. Last accessed 15.05.2015.
- Santon, R. C., Ivings, M. J., Pritchard, D. K. (2005). A New Gas Turbine Enclosure Ventilation Design Criterion. Volume 5: Turbo Expo 2005, Paper No. GT2005-68725, 445-452. doi:10.1115/gt2005-68725
- Kostyuk, V. E., Kyrylash, E. I., Kravchuk, A. L. (2013). Obobshchennaya matematicheskaya model' teplovogo sostoyaniya ukrytiy gazoturbinnykh ustanovok. Integrirovannye tekhnologii i energosbere-zhenie, 1, 22–26.
- Kostyuk, V. E., Kyrylash, E. Y. (2015). Teplovaia model korpusa hazoturbynnoho dvyhatelia. Intehrovani tekhnolohii ta enerhozberezhennia, 2.
- Launder, B. E., Spalding, D. B. (1972). Lectures in Mathematical Models of Turbulence. London: Academic Press, 169.
- Erikh, V. N., Rasina, M. G., Rudin, M. G. (1977). Khimiya i tekhnologiya nefti i gaza. L.: Khimiya, 424.
- Efremov, S. V. (2012). Proizvodstvennaya bezopasnost'. Chast' 1. Opasnye proizvodstvennye faktory. SPb: Politekhn. un-t, 223.
- Teploizolyatsionnye izdeliya ROTYS. Available: http://rotys.com/produkciya. Last accessed 15.05.2015.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Елена Ивановна Кирилаш, Владимир Евгеньевич Костюк
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.