Optimization of granularity aggregate of the periclase concrete

Authors

DOI:

https://doi.org/10.15587/2312-8372.2015.47676

Keywords:

grain size, periclase concrete, aggregate, hydraulic binder, performance of the properties

Abstract

Magnesia concrete used for the manufacture of complex configuration and monolithic linings of thermal units of ferrous and nonferrous metallurgy, industry of cement production is effective respond to combination of high temperature properties and adaptive capacity to the conditions of usage. Promising species of magnesia concrete include periclase concrete on hydraulic binders such as concretes containing cements of different nature.

Using simplex-lattice method of planning experiment it is investigated the influence of grain size of concrete mixes, which contain a filler recycled materials – crushed lack of periclase products and sintered periclase, and a binder – a mixture of periclase and calcium-alumina cements on the performance properties of the treated periclase concrete. Using the obtained polynomial models in the "structure-property" optimized particle size distribution of periclase concrete on hydraulic binders, which corresponds to a ratio of narrow fractions of filler and achieves a complex set of physical and technical properties of the composite indexes after drying and high-temperature firing.

Author Biographies

Вікторія Вікторівна Пісчанська, National Metallurgical Academy of Ukraine, Gagarina 4, Dnepropetrovsk, Ukraine, 49005

Candidate of Technical Science, Associate Professor

Department of metallurgical fuel and refractories

 

Інна Анатоліївна Алєксєєнко, National Metallurgical Academy of Ukraine, Gagarina 4, Dnepropetrovsk, Ukraine, 49005

Assistant

Department of metallurgical fuel and refractories

References

  1. Khoroshavin, L. B. (1990). Magnezialnye betony. M.: Metallurgiya, 168.
  2. Khoroshavin, L. B., Perepelitsyn, V. A., Kononov, V. A. (2001). Magnezialnye ogneupory. M.: Intermet Inzhiring, 576.
  3. Sizikov, A. M. (2009). Puti povyshenia kachestva magnezialnye betonov. Omsk: SibADI, 92.
  4. Kashcheev, I. D. et al. (2002). Ogneupory dlya promyshlenykh agregatov i topok. Book. 2. Sluzhba ogneuporov. M.: Intermet Inzhiring, 656.
  5. Sprygin, A. I., Khoroshavin, L. B. (1985). Magnezialnye betonnye bloki dlya agregatov tsvetnoy metallurgii. Ogneupory, 5, 47–49.
  6. Kim, H., Kang, J., Song, M. Y, Park, S. H., Park, D. G., Kweon, H., Nam S. S. (1999). Surface modification of MgO micro-crystals by cycles of hydration-dehydration. Bull. Korean Chem. Soc., 20 (7), 786–790.
  7. Birchal, V. S. S., Rocha, S. D. F., Ciminelli, V. S. T. (2000). The effect of magnesite calcination conditions on magnesia hydration. Minerals Engineering, Vol. 13, 14-15, 1629–1633. doi:10.1016/s0892-6875(00)00146-1
  8. Ahari, K. G., Sharp, J. H., Lee, W. E. (2002). Hydration of refractory oxides in castable bond systems – I: alumina, magnesia and alumina-magnesia mixtures. Journal of the European Ceramic Society, Vol. 22, № 4, 495–503. doi:10.1016/s0955-2219(01)00299-0
  9. Salomao, R., Bittencourt, L. R. M., Pandolfelli, V. C. (2007). A novel approach for magnesia hydration asseement in refractori castable Ceramics International, Vol. 33, 5, 803–810. doi:10.1016/j.ceramint.2006.01.004
  10. Salomao, R., Pandolfelli, V. C., Bittencourt, L. R. M. (2011). Vliyanie gidravlicheskikh vyazhushikh na gidratatsiyu spechenogo magnezita v ogneupornykh betonakh. Ogneupory i tekhnichtskaya keramika, 45, 59–63.
  11. Altun, A. (2005). Thermomechanical properties of the MgO based self-flowing castables. 48th International Colloquium of Refractories, Aachen, 28 and 29 September, 49–52.
  12. Budnikov, P. P., Khoroshavin, L. B. (1971). Ogneupornye betony na fosfatnykh svyazkakh. M.: Metallurgiya, 192.
  13. Pivinskii, Yu. E (2005). Neformovannye ogneupory. Vol. 1. Obshchie voprosy tekhnologii. M.: Teplotekhnik, 1, 448.
  14. Pyanykh, E. G., Antonov, G. I., Goncharov, V. I., Kvasman, I. M., Kamenetskiy, Yu. L. (1973). Vliyanie zernovogo sostav mass i davleniya pressovaniya na svoistva magnezialnykh obraztsov. Ogneupory, 10, 46–53.
  15. Ballani, F., Daley, D. J., Stoyan, D. (2006). Modelling the microstructure of concrete with spherical grains. Computational Materials Science, Vol. 35, № 4, 399–407. doi: 10.1016/j.commatsci.2005.03.005
  16. Gurenko, I. V., Shabanova, G. N., Korogodskaya, A. N., Dеyneka, V. V. et al. (2005). Optimizatsiya granulometricheskogo sostava betona spetsialnogo naznacheniya. Vestnik NTU KhPI. Khimiya, khimichna tekhnologiya ta ekologiya, 51, 183–189.
  17. Brazhnik, D. A., Semchenko, G. D., Bondarenko, A. A., Saman, A. M. (2005). Optimizatsiya granulometricheskogo sostava nizkotsementnykh pereklazosoderzhashikh neformovanykh mass. Sbornik nauchnyh trudov OAO UkrNIIO im. A. S. Berezhnogo, 2, 86–87.
  18. Vernigora, N. K., Logvinkov, S. M., Shabanova, G. N., Korogodskaya, A. N. (2006). Analiz fraktsionnogo sostava ogneupornykh betonov na shamotnom zapolnitele. Sbornik nauchnyh trudov OAO UkrNIIO im. A. S. Berezhnogo, 106, 71–77.
  19. Onasenko, Yu., Pischanska, V., Pylypchatin, L. (2012). Influence of the configuration the grain and granularity of the aggregate on the properties of concrete. Eastern-European Journal Of Enterprise Technologies, 4(6(58)), 18–23. doi:10.15587/1729-4061.2012.5587

Published

2015-07-23

How to Cite

Пісчанська, В. В., & Алєксєєнко, І. А. (2015). Optimization of granularity aggregate of the periclase concrete. Technology Audit and Production Reserves, 4(4(24), 19–25. https://doi.org/10.15587/2312-8372.2015.47676

Issue

Section

Technologies of food, light and chemical industry