Electric field calculation of high-voltage direct current transmission lines

Authors

  • Євгеній Олександрович Троценко National Technical University of Ukraine «Kyiv Polytechnic Institute», Av. Peremogy, 37, Kyiv-56, Ukraine, 03056, Ukraine https://orcid.org/0000-0001-9379-0061

DOI:

https://doi.org/10.15587/2312-8372.2015.47757

Keywords:

DC power line, bipolar line, electric field, method of equivalent charges

Abstract

It is adapted charges equivalent method for calculating the electrostatic field intensity under  single-stranded and double-stranded bipolar DC transmission lines in the absence of corona wires on line in dry climates.

Simple and noniterative calculation method required in order to engineer could assess whether not to exceed maximum permissible levels of the electrostatic field strength in DC power lines.

As a result of research first obtained expressions that simplify engineering calculations of electrostatic field, taking into account the symmetry of the poles as the central axis supports of bipolar lines, and do not use iterative methods of payment.

Development of methods for calculating electric field of direct current transmission lines is an important task, because in the near future is expected to increase the number of data transfers in the world, not only by building new, and as a result of the conversion of existing lines AC line DC.

Author Biography

Євгеній Олександрович Троценко, National Technical University of Ukraine «Kyiv Polytechnic Institute», Av. Peremogy, 37, Kyiv-56, Ukraine, 03056

Candidate of Sciences (Engineering), Assistant Professor

Department of High Voltage Engineering and Electrophysics

References

  1. Hingorani, N. G. (1996). High-voltage DC transmission: a power electronics workhorse. IEEE Spectrum, Vol. 33, № 4, 63–72. doi:10.1109/6.486634
  2. Long, W., Nilsson, S. (2007). HVDC transmission: yesterday and today. IEEE Power and Energy Magazine, Vol. 5, № 2, 22–31. doi:10.1109/mpae.2007.329175
  3. Lou, S., Hou, T., Wu, Y., Cui, Y. (2013). Optimizing HVDC transmission for large-scale wind power base in China. IEEE Power and energy society general meeting, 1–5. doi:10.1109/pesmg.2013.6672733
  4. Haileselassie, T. M., Uhlen, K. (2013). Power system security in a meshed North Sea HVDC grid. Proceedings of the IEEE, Vol. 101, № 4, 978–990. doi:10.1109/jproc.2013.2241375
  5. Bohn, S., Agsten, M., Marten, A.-K., Westermann, D., Boie, I., Ragwitz, M. (2014). A pan-European-North African HVDC grid for bulk energy transmission – a model-based analysis. IEEE/PES T&D Conference and exposition, 1–5. doi:10.1109/tdc.2014.6863272
  6. Häusler, M., Schlayer, G., Fitterer, G. (1997). Converting AC power lines to DC for higher transmission ratings. ABB Review, Vol. 3, 4–11.
  7. Zhang, B., He, J., Zeng, R., Gu, S., Cao, L. (2007). Calculation of ion flow field under HVDC bipolar transmission lines by integral equation method. IEEE Transactions on Magnetics, Vol. 43, № 4, 1237–1240. doi:10.1109/tmag.2007.892305
  8. Qiao, J., Zou, J., Li, B. (2015). Calculation of the ionised field and the corona losses of high-voltage direct current transmission lines using a finite-difference-based flux tracing method. IET Generation, Transmission & Distribution, Vol. 9, № 4, 348–357. doi:10.1049/iet-gtd.2014.0333
  9. Al-Hamouz, Z. M., Abdel-Salam, M., Mufti, A. (1998). Improved calculation of finite-element analysis of bipolar corona including ion diffusion. IEEE Transactions on Industry Applications, Vol. 34, № 2, 301–309. doi:10.1109/28.663472
  10. Zhao, H., Fortin, S., Ma, J., Dawalibi, F. P. (2006). EM environmental evaluation of HVDC transmission lines. The 2006 4th Asia-Pacific conference on environmental electromagnetic, 260–262. doi:10.1109/ceem.2006.257948
  11. Li, W., Zhang, B., He, J., Zeng, R. (2008). Boundary condition improvements on ion flow field calculation of HVDC bipolar transmission lines. International conference on high voltage engineering and application, 245–248. doi:10.1109/ichve.2008.4773919
  12. Bessonov, L. A. (1986). Teoreticheskie osnovy electrotehniki. Electromagnitnoe pole. M.: Vysch. schk., 263.
  13. Mujezinovic, A., Carsimamovic, A., Carsimamovic, S., Muharemovic, A., Turkovic, I. (2014). Electric field calculation around of overhead transmission lines in Bosnia and Herzegovina. International symposium on electromagnetic compatibility (EMC Europe), 1001–1006. doi:10.1109/emceurope.2014.6931049
  14. Bailey, W. H., Weil, D. E., Stewart, J. R. (1997). HVDC Power transmission environmental issues review. Oak Ridge National laboratory, 1–108. doi:10.2172/580576
  15. In: Diakov, A. F. (2012). Electricheskie seti sverh- i ultravysokogo naryazhenija EES Rossii. Teoreticheskie i prakticheskie osnovy. Elektroperedachi peremennogo toka, Vol. 1. M.: NTF "Energoprogress" Korporacii "EEEK", 696.
  16. Brzhezitskii, V. O., Trotsenko, Ye. O., Tatarenko, T. F. (2009). Rozrahunok unipolyarnoii corony metodom Deicha-Popkova, Materialy Mizhnarodnoi naukovo-tehnichnoi conferencii molodyh uchenyh, aspirantiv I studentiv "Suchasni problemy elektroenergotehniky ta avtomatyky", Vol. 2, 243–247.

Published

2015-07-23

How to Cite

Троценко, Є. О. (2015). Electric field calculation of high-voltage direct current transmission lines. Technology Audit and Production Reserves, 4(1(24), 40–45. https://doi.org/10.15587/2312-8372.2015.47757