The processability evaluation of composite of ships and floating structures based on system-technical approach

Authors

  • Юлия Алексеевна Казимиренко Admiral Makarov National University of Shipbuilding, Heroi Stalingrada Ave, 9, Mykolaiv, Ukraine, 54025, Ukraine https://orcid.org/0000-0002-9199-0753
  • Вера Владимировна Савочкина Admiral Makarov National University of Shipbuilding, Heroi Stalingrada Ave, 9, Mykolaiv, Ukraine, 54025, Ukraine https://orcid.org/0000-0001-7700-4921

DOI:

https://doi.org/10.15587/2312-8372.2015.47794

Keywords:

floating structures, designs of biological protection, systematic technical approach, manufacturability

Abstract

The article discusses the indicators of design manufacturability of biological protection of ships and floating structures for the transportation and storage of radioactive cargo of low and medium activity. The new metal-glass electric-arc coatings and aluminum-matrix hot-pressed tiles are proposed for protective layers of structure production, cladding being is carried out with epoxy adhesive.

In order to select the variant of the design which corresponds to the technological and economic indicators of efficiency, the systematic and technical approach based on the detailed complex technological indicators has been used. The coefficients of material capacity, design complexity, manufacturability of materials have been selected as the proper criteria. The detailed characteristics of technical and economic indicators of manufacturing structures of biological protection have been considered and the nomogram for determining complex coefficient of manufacturability with different types of composite protective layers was built. The influence of material and coating composition on the factor of material capacity has also been detected. The determination of the complex coefficient of design manufacturability for different design and layout solutions will allow to develop organizational and technical activities and predict the dynamics of the formation of the factors of economic efficiency. The results can be used at the stages of design studies, technological preparation of manufacture, construction and operation of ships and floating structures.

Author Biographies

Юлия Алексеевна Казимиренко, Admiral Makarov National University of Shipbuilding, Heroi Stalingrada Ave, 9, Mykolaiv, Ukraine, 54025

Candidate of Technical Sciences, Associate Professor

Department of Materials Science and Technology of Metals

Вера Владимировна Савочкина, Admiral Makarov National University of Shipbuilding, Heroi Stalingrada Ave, 9, Mykolaiv, Ukraine, 54025

Assistant

Department of Theory and Ship Design

References

  1. Kazymyrenko Y. (2014). The formation of constructions of floating composite structures for transportation and storage of radioactive cargo. Technology Audit And Production Reserves, 6(5(20)), 7–9. doi:10.15587/2312-8372.2014.31884
  2. Kazymyrenko, Y. (2014). Patterns and Mechanisms of Interaction of Radioactive Cargo Radiation with Metal-Glass Layer of Watercrafts Structure. The Advanced Science Journal, 12, 45–48. doi:10.15550/asj.2014.12.045
  3. Kazymyrenko, Y. A., Karpechenko, A. A., Zhdanov, A. A., Tumakov, K. O. (2012). Formirovanie ul'tradispersnoi struktury v kompozitsionnyh elektrodugovyh pokrytiiah, napolnennyh polymi stekliannymi mikrosferami. Visnyk Natsionalnoho universytetu korablebuduvannia, 3. Available: http://evn.nuos.edu.ua/article/view/23001
  4. Linnik, A. K., Baldin A. A. (2013). Postanovka zadachi o stoimostnoi inzhenerii. Systemne proektuvannia ta analiz kharakterystyk aerokosmichnoi tekhniky, 15, 58–62.
  5. Pavlov, I. D., Kaplunovskaia, M. A. (2009). Sistemotehnicheskaia otsenka kompleksnoi tehnologichnosti proektnyh reshenii stroitel'nyh konstruktsii bionicheskogo tipa. Stroitel'stvo, materialovedenie, mashinostroenie, 50, 232–236.
  6. Pavlov, I. D., Kaplunovskaia, M. A. (2008). Organizatsionno-tehnicheskoe obosnovanie nekotoryh kriteriev tehnologichnosti na osnove sistemotehnicheskih printsipov. Nauchno-tehnicheskii sbornik «Kommunal'noe hoziaistvo gorodov», 85, 192–198.
  7. Perov, V. N., Tsikalo, N. V. (2012). Tehnologichnost' korpusnyh konstruktsii. Nikolaev: NUK, 72.
  8. Zhukov, Yu. I., Reznik, B. L., Rogozin, V. A., Chernenko, V. I. (2010). Formirovanie uslovii podderzhki zhiznennogo tsikla izdelii sudovogo mashinostroeniia na etape tehnologicheskoi podgotovki stroitel'stva sudna. Morskie intellektual'nye tehnologii. Spetsvypusk, 133–135.
  9. Aleksandrov, N. I., Liashin, P. L., Petuhov, V. V., Malyshev, S. P. (2013). Razrabotka ustanovki konditsionirovaniia ZhRO, obrazuiushchihsia na neftedobyvaiushchih morskih platformah i terminalah. Sudostroenie, 2, 61–64.
  10. Baryshnikov, M. V., Hudiakov, A. V., Ovsiannikov, V. M., Shliachkov, V. I. (2010). Perevozka OYaT morskim transportom. Bezopasnost' okruzhaiushchei sredy, 1, 98–105.
  11. Sannen, H. (2007). Shipment of radioactive materials: historical overview of IAEA regulations – a personal perception. Packaging, Transport, Storage & Security of Radioactive Material, Vol. 18, № 1, 19–20. doi:10.1179/174651007x191143
  12. Rashkovskii, A. S., Slutskii, N. G., Koshkin, K. V. (2005). Metodologicheskie osnovy upravleniia proektami stroitel'stva kompozitnyh plavuchih sooruzhenii. Nikolaev: NUK, 232.
  13. Semashkina, Z. N. (2014). Materialoemkost' proizvodstva: soderzhanie i jevoljucija ponjatija. Internet zhurnal “Naukovedenie”, 4 (23). Available: http://naukovedenie.ru/PDF/43EVN414.pdf

Published

2015-07-23

How to Cite

Казимиренко, Ю. А., & Савочкина, В. В. (2015). The processability evaluation of composite of ships and floating structures based on system-technical approach. Technology Audit and Production Reserves, 4(1(24), 65–68. https://doi.org/10.15587/2312-8372.2015.47794