Development of neural network method for prediction of methane content in mine workings

Authors

DOI:

https://doi.org/10.15587/2312-8372.2015.51249

Keywords:

prediction, neural network, distributed TLFN, identification of the structure and parameters of the network, mean square error

Abstract

Despite the intensive development of computer systems being introduced at the coal enterprises to provide air and gas monitoring, security is still not high enough, so that emergencies continue to occur due to a high concentration of explosive gases. Therefore, development of methods of forecasting the content of combustible gases in mines, which are used to improve the quality of air and gas assessment of the situation is urgent.

In order to solve the problem of forecasting in the article the most common methods of forecasting – extrapolation, mathematical, associative, were analyzed.

On the basis of the comparative characteristics the choice was made in favor of the neural network method. The main criteria for the choice of a particular neural network were such as the presence of feedback, the delay in the input layer, fast learning and prediction accuracy. Amongst all the networks that meet the criteria, the most suitable one is distributed TLFN.

In order to determine the selected network architecture some numerical experiments were carried out. The criterion for the selection of architecture was the minimum MSE. According to the results, network architecture with the number of neurons to 10 of the study was chosen.

In order to evaluate the effectiveness of the proposed method numerical studies that prove the effectiveness of the selected network architecture and its learning algorithm were carried out.

Author Biography

Юлія Леонідівна Дікова, Donetsk National Technical University, 2, Square Shibankova, Krasnoarmiysk, Ukraine, 85300

Graduate student

Department of Computer sciences

References

  1. Bryuhanov, А. M., Ivanov, Yu. A., Silakov, S. M. (2007). Sozdanie sovremennoy sistemyi kompleksnoy bezopasnosti. Sposobyi i sredstva sozdaniya bezopasnyih i zdorovyih usloviy truda v ugolnyih shahtah, 20, 7–15.
  2. Radchenko, V. V., Maleev, N. V., Martyinov, A. A., Zaharov, V. S., Shevtsov, V. A. (2005). Perspektivyi povyisheniya urovnya promyishlennoy bezopasnosti ugolnyih shaht pri ispolzovanii sistemyi dispetcheskogo kontrolya (UTAS). Gornyiy informatsionno-analiticheskiy byulleten, 2 (12), 32–44.
  3. Tihonov, E. E. (2006). Metodyi prognozirovaniya v usloviyah ryinka. Nevinnomyissk, 221.
  4. Box, G. E. P., Jenkins, G. M., Reinsel, G. C. (2008). Time Series Analysis: Forecasting and Control. Ed. 4. Prentice Hall, 810.
  5. Webb, A. R. (2002). Statistical Pattern Recognition. Ed. 2. John Wiley & Sons, Ltd., 495. doi:10.1002/0470854774
  6. Lukashin, Yu. L. (2003). Adaptivnyie metodyi kratkosrochnogo prognozirovaniya. Moskow: Finansyi i statistika, 416.
  7. Park, J., Nelson, D. (2000, January). Evaluation of an energy-based approach and a critical plane approach for predicting constant amplitude multiaxial fatigue life. International Journal of Fatigue, Vol. 22, № 1, 23–39. doi:10.1016/s0142-1123(99)00111-5
  8. Rassel, S., Norvig, P. (2007). Iskusstvennyiy intellekt: sovremennyiy podhod. Ed. 2. Moskow: Izdatelskiy dom «Vilyams», 1408.
  9. Fedorov, E. E., Dikova, Yu. L. (2015). Razrabotka sposoba prognoza soderzhaniya vzryivoopasnyih gazov v gornyih vyirabotkah. Naukovi pratsi Donetskogo natsionalnogo tehnichnogo universitetu. Seriya: Obchislyuvalna tehnIka ta avtomatizatsIya, 1 (28), 97–104.
  10. Dikova, Yu. L., Fedorov, E. E. (2015). Razrabotka neyrosetevogo sposoba diagnostiki shahtnogo oborudovaniya. Bionika intellekta, 1 (84), 80–84.

Published

2015-09-22

How to Cite

Дікова, Ю. Л. (2015). Development of neural network method for prediction of methane content in mine workings. Technology Audit and Production Reserves, 5(6(25), 60–62. https://doi.org/10.15587/2312-8372.2015.51249