Information technology of scaling cloud app with variable load peaks

Authors

DOI:

https://doi.org/10.15587/2312-8372.2015.51716

Keywords:

cloud computing, PaaS, cloud app scaling

Abstract

One of the main advantages of cloud computing is ability to adapt to rapid changes of user count via web app scaling that allows deploying computing resources only when there is a demand. Modern systems of web app automatic scaling run base on reactive scaling rules. Such rules perform initialization of a scaling process when some app metric, for example CPU load, reaches a critical value. This approach in efficient in general, but in case of short and intense load peaks, there can be problems in cloud app functioning during time period between starting of cloud app scaling and final deployment of computing resources. Developed information technology removes this disadvantage by forecasting of cloud app usage and deploying computing resources in advance. Forecasting of cloud app using is the core idea of proactive scaling.

Developed information technology of cloud app scaling is based on combination of reactive and proactive scaling. Comparison of cloud app efficiency shows that using of developed information technology of cloud app scaling allows increasing general web app efficiency by 8 %. This allows cutting spending on cloud application hosting and making cloud application more responsive. 

Author Biographies

Тамара Олександрівна Савчук, Vinnytsia National Technical University, Khmelnytsky Highway 95, Vinnytsya

Candidate of Technical Sciences, Professor

Department of Computer Science

Андрій Валерійович Козачук, Vinnytsia National Technical University, Khmelnytsky Highway 95, Vinnytsya

Assistant

Department of Computer Science

References

  1. Amazon EC2. Amazon Web Services. Available: http://aws.amazon.com/es/ec2/
  2. Jinesh, V., Sajee, M. (2014, January). Overview of Amazon Web Services. Amazon Web Services. Available: http://www.fronde.com/assets/Datasheets/AWS-Overview.pdf
  3. Sanderson, D. (2015). Programming Google App Engine with Python: Build and Run Scalable Python Apps on Google's Infrastructure. O'Reilly Media, Inc., 464.
  4. Virtual Machine and Cloud Service Sizes for Azure. (2015, June 24). Microsoft Azure. Available: https://msdn.microsoft.com/en-us/library/azure/dn197896.aspx. Last accesed 10.08.2015.
  5. Wilder, B. (2012). Cloud Architecture Patterns: Using Microsoft Azure. O'Reilly Media, Inc, 182.
  6. Microsoft Azure. Available: http://portal.azure.com/
  7. CloudMonix. Available: http://cloudmonix.com/
  8. Gvozdeva, V. A. (2011). Informatika, avtomatizirovannye informatsionnye tehnologii i sistemy. Moscow: Forum, 544.
  9. Lihacheva, G. N., Gasparian, M. S. (2007). Informatsionnye tehnologii. Moscow: Izd. tsentr EAOI, 189.
  10. Korneev, I. K., Ksandopulo, G. I., Adamovich, V. A. (2009). Informatsionnye tehnologi. Prospekt, 224.
  11. Wayner, P. (2014, Feb 26). Ultimate cloud speed tests: Amazon vs. Google vs. Windows Azure. InfoWorld. Available: http://www.infoworld.com/article/2610403/cloud-computing/ultimate-cloud-speed-tests--amazon-vs--google-vs--windows-azure.html
  12. Razvazhaiev, A., Soloviov, O. (2014). Tekhnolohii "khmarnoho" obchyslennia dlia zastosuvannia v informatsiinykh tsentrakh. Naukovi pratsi Natsionalnoi biblioteky Ukrainy im. V. I. Vernadskoho, 40, 226–236.
  13. Toffetti, G. (2012). Web Engineering for Cloud Computing. Current Trends in Web Engineering. Springer Science + Business Media, 5–19. doi:10.1007/978-3-642-35623-0_2
  14. Bellenger, D., Bertram, J., Budina, A., Koschel, A., Pfänder, B., Serowy, C., Astrova, I., Grivas, S. G., Schaaf, M. (2011). Scaling in Cloud Environments. Recent Researches in Computer Science, 145–150. Available: http://www.wseas.us/e-library/conferences/2011/Corfu/COMPUTERS/COMPUTERS-23.pdf
  15. Dykstra, T. (08.10.2015). Azure App Service, Cloud Services, and Virtual Machines comparison. Microsoft Azure. Available: https://azure.microsoft.com/en-us/documentation/articles/choose-web-site-cloud-service-vm/
  16. Dykstra, T. (09.22.2015). Azure WebJobs documentation resources. Microsoft Azure. Available: https://azure.microsoft.com/en-us/documentation/articles/websites-webjobs-resources/
  17. Wills, A. C. (10.05.2015). Get started with Visual Studio Application Insights. Microsoft Azure. Available: http://azure.microsoft.com/en-us/documentation/articles/app-insights-get-started/
  18. Fritz, A. (2014, Dec 11). Export telemetry from Application Insights. Microsoft Corporation. Available: http://blogs.msdn.com/b/visualstudioalm/archive/2014/12/11/export-telemetry-from-application-insights.aspx
  19. Gaster, B. (2013, October 22). Getting Started with the Windows Azure Management Libraries for.NET. Website of Brady Gaster. Available: http://www.bradygaster.com/post/getting-started-with-the-windows-azure-management-libraries
  20. MATLAB Compiler SDK. The MathWorks, Inc. Available: http://www.mathworks.com/products/matlab-compiler-sdk/
  21. R.NET. CodePlexProject Hosting for Open Source Software. Available: http://rdotnet.codeplex.com/
  22. Curino, C., Jones, E. P. C., Popa, R. A., Malviya, N., Wu, E., Madden, S., Balakrishnan, H., Zeldovich, N. (2011). Relational Cloud: A Database-as-a-Service for the Cloud. 5th Biennial Conference on Innovative Data Systems Research, CIDR 2011, January 9-12, 2011, Asilomar, California. Massachusetts Institute of Technology, 235–240. Available: http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper33.pdf
  23. WorldCup98. The Internet Traffic Archive. Available: http://ita.ee.lbl.gov/html/contrib/WorldCup.html
  24. Mohan, M. (2014, April 28). How Much Traffic Do You Need To Make $100,000 With Google AdSense. Minterest. Available: http://www.minterest.org/how-much-traffic-do-you-need-to-make-money/

Published

2015-09-22

How to Cite

Савчук, Т. О., & Козачук, А. В. (2015). Information technology of scaling cloud app with variable load peaks. Technology Audit and Production Reserves, 5(2(25), 4–11. https://doi.org/10.15587/2312-8372.2015.51716

Issue

Section

Information Technologies: Original Research