Research of software package modules for identification of dynamic objects
DOI:
https://doi.org/10.15587/2312-8372.2015.51740Keywords:
packages of software modules, identification, dynamic objects, modeling, management, system, model parametersAbstract
There were researched the packages of software modules for dynamics objects identifying, that were make ability of saving in opposite of simple software modules for automatic forming of applications. The article shows the place of the packages of software modules for checking of dynamics objects identifying on stationary condition and also the ability of using for many times adaptively identifying systems. The package of software module consists of the package core, data base and models, which can be changed according to subjects. The input for software module is the task of identifying of some dynamic object with static information about this object with the time interval. The output is identified dynamic object model and forecast the behavior of this object for the future. The process of creating packages of software modules for dynamics objects identifying should be connected to the subject area, but because of modularity it can be possible to use separated software packages of modules with different subject areas.
References
- Diakonov, V., Kruglov, V. (2001). MATLAB. Analiz, identifikatsiia i modelirovanie sistem. St. Petersburg: Piter, 448.
- Billings, S. A. (2013, July 23). Severely Nonlinear Systems. NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains. Wiley-Blackwell, 289–336. doi:10.1002/9781118535561.ch9
- Samsonov, V. V., Silvestrov, A. M. (2012). Narysy z teorii identyfikatsii. Kyiv: NUKhT, 222.
- Radyonov, V. M. (2014). Systema upravlenyia hydrotsyklonom s ydentyfykatsyei parametrov y vyborom optymalnoi modely. Hirnychyi visnyk, 97, 181–184.
- Mal'tseva, T. V. (2008). Ob odnom metode postroeniia matematicheskoi modeli lineinogo dinamicheskogo ob’ekta. Molodoi uchenyi, 1, 40–48.
- Dorofeiuk, Yu. A. (2010). Strukturnaia identifikatsiia slozhnyh ob’ektov upravleniia na baze metodov kusochnoi approksimatsii. Upravlenie bol'shimi sistemami, 30, 79–88.
- Ali Hussein Hasan, Grachev, A. N. (2014). On-Line Parameters Estimation Using Fast Genetic Algorithm. Journal of Electrical and Control Engineering (JECE), Vol. 4, № 2, 16–21.
- Razali, N. M., Geraghty, J. (2011). Genetic Algorithm Performance with Different Selection Strategies in Solving TSP. Proceedings of the World Congress on Engineering, Vol. II. London: UK, 6.
- Karpov, A. A., Katsiuba, O. A. (2009). Opredelenie parametrov mnogomernoi po vhodu i vyhodu lineinoi dinamicheskoi sistemy pri nalichii avtokorrelirovannyh pomeh v signalah. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta im. ak. S. P. Koroleva, 2 (18), 135–142.
- Kalman, R. (1960). Contribution to the Theory of Optimal Control. Bull. Soc. Mat. Mech, Vol. 5, № 1, 102–119. Available: http://liberzon.csl.illinois.edu/teaching/kalman_paper.pdf
- Luenberger, D. (1979). Introduction to dynamic systems. N. Y.:Wiley, 446. Available: http://home.deib.polimi.it/guariso/BAC/Texts/Luenberger.pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Сергій Віталійович Грибков, Тетяна Вікторівна Логвин, Олена Валеріївна Харкянен
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.