Improvement connection control of optical components using TV means

Authors

  • Костянтин Михайлович Божко National Technical University of Ukraine "Kyiv Polytechnic Institute", 37, Prospect Peremohy, 03056, Kyiv-56, Ukraine https://orcid.org/0000-0002-5052-0704
  • Сергій Юрійович Сидоренко National Technical University of Ukraine "Kyiv Polytechnic Institute", 37, Prospect Peremohy, 03056, Kyiv-56, Ukraine https://orcid.org/0000-0003-2099-6864
  • Сергій Миколайович Кущовий National Technical University of Ukraine "Kyiv Polytechnic Institute", 37, Prospect Peremohy, 03056, Kyiv-56, Ukraine https://orcid.org/0000-0003-3704-3365

DOI:

https://doi.org/10.15587/2312-8372.2015.51932

Keywords:

optical components, TV control, sub-pixel measurement, photovoltaic solar panels

Abstract

The possibility of using the TV means for control of the nodes and optical components, in particular, the presence of defects in their joints.

The necessity to control the optical components during the manufacturing process throughout the process flow as it provides a saving of material and financial resources is proved.

It is proved that TV is a preferred method and means to interference and shadow method in the control of optical components and their joints.

An overview of joining technology of optical components is done and their requirements on permissible size and number of defects per unit area of the connection are classified.

It is theoretically proved the possibility of measurement of geometrical sizes of defects with an accuracy which exceeds the minimum element resulting in a television camera image – one pixel. Subpixel measurements are provided by algorithmic methods with computer imaging.

The properties of the error sources of television measurement and the criteria for neglecting some of them are analyzed. In particular, the possibility of compensating unevenness sensitivity of television camera is marked.

The study shows the need and opportunity to use a wide television methods and means for controlling optical defects in the components, as well as compounds that lead to substantial savings in the production process, and the operation of optical devices and systems.

Author Biographies

Костянтин Михайлович Божко, National Technical University of Ukraine "Kyiv Polytechnic Institute", 37, Prospect Peremohy, 03056, Kyiv-56

Senior Lecturer

Department of Scientific, Analytic and Ecological Instruments and Systems 

Сергій Юрійович Сидоренко, National Technical University of Ukraine "Kyiv Polytechnic Institute", 37, Prospect Peremohy, 03056, Kyiv-56

Postgraduate Student 

Department of Scientific, Analytic and Ecological Instruments and Systems 

Сергій Миколайович Кущовий, National Technical University of Ukraine "Kyiv Polytechnic Institute", 37, Prospect Peremohy, 03056, Kyiv-56

Postgraduate Student 

Department of Scientific, Analytic and Ecological Instruments and Systems 

References

  1. Poriev, V. A., Poriev, H. V. (2000). Kontseptualni aspekty vykorystannia pryladiv z elektronnym rozghortanniam zobrazhennia dlia analizu optychnykh poliv. Naukovi visti NTTU «KPI», 1, 56–61.
  2. Semibratov, M. N. (1978). Tehnologiia opticheskih detalei. Moscow: Mashinostroenie, 415.
  3. Zgurovskii, G. M., Porev, G. V. (2002). Televizionnaia izmeritel'naia sistema – kontseptsiia i praktika. Sbornik nauchnyh trudov 6-go Mezhdunarodnogo molodiozhnogo foruma «Radioelektronika i molodiozh' v XXI veke». Kharkov: KhNURE, 235–236.
  4. Richard, H., Raffel, M. (2001, August 16). Principle and applications of the background oriented schlieren (BOS) method. Measurement Science and Technology, Vol. 12, № 9, 1576–1585. doi:10.1088/0957-0233/12/9/325
  5. Meier, G. (2002, July). Computerized background-oriented schlieren. Experiments in Fluids, Vol. 33, № 1, 181–187. doi:10.1007/s00348-002-0450-7
  6. Elsinga, G. E., van Oudheusden, B. W., Scarano, F., Watt, D. W. (2003, November 22). Assessment and application of quantitative schlieren methods: Calibrated color schlieren and background oriented schlieren. Experiments in Fluids, Vol. 36, № 2, 309–325. doi:10.1007/s00348-003-0724-8
  7. Hargather, M. J., Settles, G. S. (2012, January). A comparison of three quantitative schlieren techniques. Optics and Lasers in Engineering, Vol. 50, № 1, 8–17. doi:10.1016/j.optlaseng.2011.05.012
  8. Malacara, D., Servin, M., Malacara, Z. (2005). Interferogram Analysis for Optical Testing. CRC Press Taylor & Francis Group, 546. doi:10.1201/9781420027273
  9. Malacara, D. (2007). Optical Shop Testing. Wiley, 862. doi:10.1002/9780470135976
  10. Garbusi, E., Pruss, C., Liesener, J., Osten, W. (2007, June 18). New technique for flexible and rapid measurement of precision aspheres. Proc. SPIE 6616, Optical Measurement Systems for Industrial Inspection, 661629. doi:10.1117/12.727898
  11. Pruss, C., Garbusi, E., Osten, W. (2008). Testing Aspheres. Optics and Photonics News, Vol. 19, № 4, 24–29. doi:10.1364/opn.19.4.000024
  12. Garbusi, E., Pruss, C., Osten, W. (2008). Interferometer for precise and flexible asphere testing. Optics Letters, Vol. 33, № 24, 2973–2975. doi:10.1364/ol.33.002973
  13. Seifert, L., Pruss, C., Dörband, B., Osten, W. (2009, June 15). Measuring aspheres with a chromatic Fizeau interferometer. Proc. SPIE 7389, Optical Measurement Systems for Industrial Inspection VI, 738919. doi:10.1117/12.830658
  14. Maslov, V. P. (2009). Mikro- i nanotehnologii soedineniia pretsizionnyh detalei optiko-elektronnyh priborov. Visnyk Ukrainskoho materialoznavchoho tovarystva, 1 (2), 18–35.
  15. Maslov, V. P. (2012). Fizyko-tekhnolohichni problemy ziednannia pretsyziinykh detalei optyko-elektronnykh pryladiv. Kyiv: NTUU «KPI», 160.
  16. Panov, V. A., Kulagin, V. V., Pogarev, G. V., Kruger, M. Ya. et al.; In: Kruger, M. Ya. (1967). Spravochnik konstruktora optiko-mehanicheskih priborov. Leningrad: Mashinostroenie, 760.
  17. Prokof'ev, O. E., Pishchuk, G. F., Cherednik, V. S., Kurshev, G. A. (1984). Metody soedineniia opticheskih detalei. Kyiv: Tehnіka, 128.
  18. Morozov, I. A., Morozov, E. N., Yurkevich, I. I. (1978). Osobennosti soedineniia opticheskih elementov metodom GOKa. Minsk: In-t fiziki AN BSSR, 210.
  19. Voronkov, V. B., Guk, E. G., Kozlov, V. A., Shuman, V. B. (1998). Priamoe srashchivanie kremnievyh plastin s diffuzionnym floem. Pis'ma v ZhTF, 6, 1–4.
  20. Poriev, V. A., Bozhko, K. M., Markina, O. M., Sulima, O. V., Rudyk, T. O. (2015). Rozrobka metodu kontroliu yakosti sklokrystalichnykh materialiv z vykorystanniam televiziinoi vymiriuvalnoi systemy. Research report on the State Registration Number of 0115U001576 from 03.09.2015, 54.
  21. Teleshov, G. V. (1995). Pogreshnost' opredeleniia lineinyh razmerov v sistemah obrabotki izobrazheniia na fotochuvstvitel'nyh priborah s zariadovoi sviaz'iu. Izvestiia VUZov. Priborostroenie, Vol. 38, № 11-12, 44–46.

Published

2015-09-22

How to Cite

Божко, К. М., Сидоренко, С. Ю., & Кущовий, С. М. (2015). Improvement connection control of optical components using TV means. Technology Audit and Production Reserves, 5(3(25), 55–59. https://doi.org/10.15587/2312-8372.2015.51932