Intesification of tower gas washer in the soda ash production

Authors

  • Віктор Федорович Моісєєв National Technical University «Kharkiv Polytechnic Institute», st. Frunze, 21, Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-3217-1467
  • Євгенія Володимирівна Манойло National Technical University «Kharkiv Polytechnic Institute», st. Frunze, 21, Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-6538-0580
  • Аліна Олегівна Грубнік National Technical University «Kharkiv Polytechnic Institute», st. Frunze, 21, Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-8561-5682

DOI:

https://doi.org/10.15587/2312-8372.2015.56295

Keywords:

soda ash, absorption, vortex absorber, bubble principle, mass transfer apparatus, gas emissions

Abstract

The results of studies on the effectiveness of existing designs of soda production absorbers for purification of gas emissions from ammonia are given. The main sources of ammonia emissions from the production of soda ash production are defined and shortcomings of existing equipment are shown.

Protection of air from pollution by industrial emissions is one of the most important issues of our time that covers in one way or another almost all countries of the world, regardless of their level of industrial development. It does not recognize territorial borders.

Therefore, the creation of new designs of machines for cleaning, improvement of the existing gas purification equipment is the only way to increase the volume of economic activity and the expansion of production.

Based on the analysis of design and the performance of the absorption apparatus it is proved expediency of creating a new structure of the vortex unit, which will increase the degree of purification, reduce the production area, which occupies the dust removal equipment, and reduce the energy costs of the cleaning process.

The authors have developed a new design of the vortex absorber and materials are sent at obtaining a patent of Ukraine.

Author Biographies

Віктор Федорович Моісєєв, National Technical University «Kharkiv Polytechnic Institute», st. Frunze, 21, Kharkiv, Ukraine, 61002

Candidateof Technical Sciences, Professor

Department of Chemical Technique and Industrial Ecology

Євгенія Володимирівна Манойло, National Technical University «Kharkiv Polytechnic Institute», st. Frunze, 21, Kharkiv, Ukraine, 61002

Candidate of Technical Sciences, Associate Professor

Department of Chemical Technique and Industrial Ecology

Аліна Олегівна Грубнік, National Technical University «Kharkiv Polytechnic Institute», st. Frunze, 21, Kharkiv, Ukraine, 61002

Department of Chemical Technique and Industrial Ecology

References

  1. Titov, V. M., Tkach, G. A., Shaporev, V. P., Kolosov, A. V. (1992). Osnovnye napravleniia modernizatsii teplo- i massoobmennyh apparatov sodovogo proizvodstva s tsel'iu zashchity okruzhaiushchei sredy. XI Vsesoiuznaia konferentsiia po himicheskim reaktoram «Himreaktor-11. Reaktory dlia protsessov zashchity okruzhaiushchei sredy». Alushta, 12.
  2. Titov, V. M. (2001). Razrabotka teoreticheskih osnov tehnologii i oborudovaniia proizvodstva kal'tsinirovannoi sody s tsel'iu sozdaniia maloothodnogo proizvodstva. Kharkov, 32.
  3. Zelikin, M. B., Mitkevich, E. M., Nenko, E. S. et al. (1959). Proizvodstvo kal'tsinirovannoi sody. Moscow: Goshimizdat, 422.
  4. Smit, R., Klemesh, I., Tovazhnianskii, L. L. et al. (2000). Foundations of heat processes integration. Kharkov: NTU «KhPI», 456.
  5. Trusova, E. A., Tsodikov, M. V., Slivinskii, V. P. et al. (1995). Sostoianie i perspektiva kataliticheskoi ochistki gazovyh vybrosov (obzor). Neftehimiia, Vol. 35, № 1, 3–24.
  6. Tropinkina, G. N., Kalinkina, L. I. (1983). Tehniko-ekonomicheskie pokazateli promyshlennoi ochistki vozduha ot organicheskih veshchestv. Moscow: TsINTE-neftemash, 45.
  7. Nikolaev, N. A. (1974). Issledovaniia i raschet rektifikatsionnyh i absorbtsionnyh apparatov vihrevogo tipa. Kazan: KHTI, 33.
  8. Ramm, V. M. (1976). Absorbtsiia gazov. Moscow: Khimiia, 656.
  9. Gilliland, E. R., Sherwood, T. K. (1934). Diffusion of vapors into Air Streams. Industrial & Engineering Chemistry, Vol. 26, № 5, 516–523. doi:10.1021/ie50293a010
  10. Kafarov, V. V. (1971). Osnovy massoperedachi. Ed. 2. Moscow: Vysshaia shkola, 494.
  11. Antonov, Yu. E., Safin, R. Sh., Reut, V. N. (1975). Issledovanie mezhfaznoi poverhnosti v vihrevoi raspylitel'noi kolonne. Teoreticheskie osnovy himicheskoi tehnologii, Vol. 9, № 1, 140–142.
  12. Safin, R. Sh., Lobanov, V. M. (1968). K voprosu ispol'zovaniia vihrevogo effekta v skorostnyh massoobmennyh apparatah. Trudy KHTI, 39, 283–288.
  13. Mahotkin, A. F., Hapugin, I. N., Pozdeeva, A. F. (2001). Opredelenie kontsentratsii i razmera chastits tumana azotnoi kisloty: Metod ukazaniia. Kazan, 8.
  14. In: Tarat, E. Ya. (1976). Intensivnye kolonnye apparaty dlia obrabotki gazov zhidkosti. Leningrad: Himiia, 100.
  15. Hatch, T. F., Pigford, R. L. (1962, August). Simultaneous Absorption of Carbon Dioxide and Ammonia in Water. Industrial & Engineering Chemistry Fundamentals, Vol. 3, № 1, 209–214. doi:10.1021/i160003a009
  16. Pinset, B. R. W., Pearson, L., Roughton, F. G. W. (1956). The Kinetics of Combination of Carbon Dioxide with Ammonia. Transactions of the Faraday Society Vol. 52, 1594–1958. doi:10.1039/tf9565201594
  17. Tseitlin, M. A., Frumin, V. M. (1984). Raschet odnovremennoi absorbtsii ammiaka i dioksida ugleroda v sodovom proizvodstve. Himicheskaia promyshlennost, 7, 424–426.

Published

2015-11-26

How to Cite

Моісєєв, В. Ф., Манойло, Є. В., & Грубнік, А. О. (2015). Intesification of tower gas washer in the soda ash production. Technology Audit and Production Reserves, 6(4(26), 72–77. https://doi.org/10.15587/2312-8372.2015.56295

Issue

Section

Technologies of food, light and chemical industry