Modelling of consumer confidence generating, based on cluster analysis

Authors

DOI:

https://doi.org/10.15587/2312-8372.2015.56923

Keywords:

cluster analysis, segmentation, cluster profile, cluster capacity, consumer confidence, PR-strategy

Abstract

This article presents the application of cluster analysis to marketing strategy development for company products promotion. The objectives of this work are consumers segmentation, identification of internal patterns and making recommendations for each target group. The mechanism of consumers segmentation based on k-means clustering method. Validation of method choice, splitting the initial data on training and test sets are described, along with choice of input and output fields for iterative process of clustering. For each of resulting clusters, its features are analyzed and its substantial interpretation is given. Based on received data, recommendations are issued to a pharmaceutical company PR-strategy development aimed to each consumer target group as to confidence generation to manufactured medicines. The received results allow to build PR-activities aimed to effective formation of customer positive attitude and loyalty.

Author Biography

Ольга Владимировна Дьячкова, V. N. Karazin Kharkiv National University, Svobody sq., 4, Kharkiv, Ukraine, 61022

Department of Mathematical Methods in Economics

References

  1. Gamble, P., Stone, M., Woodcock, N. (2002). Marketing vzaimootnoshenii s potrebiteliami. Translated from English. Moscow: FAIR-PRESS, 512.
  2. Naumova, O. E. (2011). Formuvannia loialnosti spozhyvachiv yak stratehichnyi napriam menedzhmentu pidpryiemstva. Visnyk Khmelnytskoho natsionalnoho universytetu, Vol. 4, 6, 171–174.
  3. Yaremenko, S. S. (2014). Marketynhovi doslidzhennia vpodoban spozhyvachiv bizhuterii na ukrainskomu rynku. Yevropeiskyi vektor ekonomichnoho rozvytku, 1 (16), 210–216.
  4. Pashchuk, L. (2014). Perspektyvni napriamy vykorystannia neiromarketynhu v upravlinni povedinkoiu spozhyvachiv. Marketynh v Ukraini, 3, 16–26.
  5. Hiziroglu, A., Patwa, J., Talwar, V. (2012, June). Customer portfolio analysis: Crisp classification versus fuzzy classification – Based on the supermarket industry. Journal of Targeting, Measurement and Analysis for Marketing, Vol. 20, № 2, 67–83. doi:10.1057/jt.2012.5
  6. Slobodianiuk, M. M., Samborskyi, O. S. (2008). Struktura spozhyvannia ta spozhyvatski perevahy antyhistaminnykh likarskykh preparativ v Ukraini. Materialy nauk.-prakt. konf. «Efektyvnist vykorystannia marketynhu ta lohistyky farmatsevtychnymy orhanizatsiiamy». Kharkiv: NFaU, 114–119.
  7. Pestun, I. V. (2010). Marketynhove upravlinnia povedinkoiu spozhyvachiv, yaki zaimaiutsia samolikuvanniam. Zaporozhskii meditsinskii zhurnal, 12 (1), 77–81.
  8. Horn, B., Huang, W. Comparison of Segmentation Approaches. Decision Analyst. Available: http://www.decisionanalyst.com/publ_art/CompareSegmentation.dai
  9. Hill, N., Self, B., Roche, G. (2004). Customer Satisfaction Measurement for ISO 9000:2000. Translated from English. Moscow: Tehnologii, 192.
  10. Deductor. Rukovodstvo analitika. Versiia 5.3. (2013). Moscow: BaseGroup Labs, 213.
  11. Mandel, I. D. (1988). Klasternyi analiz. Moscow: Finansy i statistika, 176.
  12. In: Aggarwal, C., Reddy, C. (2014). Data Clustering: Algorithms and Applications. CRC Press, 624.
  13. Anderberg, M. R. (1973). Cluster analysis for application. NY: Academic Press, 359. doi:10.1016/B978-0-12-057650-0.50001-6
  14. Bock, H.-H. (2008, December). Origins and extensions of the k-means algorithm in cluster analysis. Electronic Journal for History of Probability and Statistics, Vol. 4, № 2, 1–18. Available: http://www.jehps.net/Decembre2008/Bock.pdf
  15. Sheth, J. N., Sherman, L. (2011). Cluster Analysis and its Applications in Marketing Research. Multivariate Methods for Market and Survey Research. Marketing Classics Press, 193–208.

Published

2015-11-26

How to Cite

Дьячкова, О. В. (2015). Modelling of consumer confidence generating, based on cluster analysis. Technology Audit and Production Reserves, 6(5(26), 20–24. https://doi.org/10.15587/2312-8372.2015.56923