Determination of transfer functions of the automatic electrohydraulic drive for special process equipment

Authors

  • Татьяна Яковлевна Таванюк Volodymyr Dahl East Ukrainian National University, ave. Soviet, 59, Severodonetsk, Ukraine, 93400, Ukraine https://orcid.org/0000-0002-9199-6821

DOI:

https://doi.org/10.15587/2312-8372.2015.57174

Keywords:

transfer functions, dynamic performance, a mathematical model, automatic electrohydraulic drive

Abstract

This article discusses the improvement of special technological equipment due to the development of mathematical models of work processes that occur in the equipment and take into account the particular purpose of the process equipment. The main objective is to construct a mathematical model and obtaining the transfer functions of the electro-hydraulic drive equipment with passport data of standard devices and drive devices. The linearization of the mathematical model is made on the basis of the analysis of dynamic and statistical characteristics of work processes in equipment subject to a number of assumptions. The developed mathematical model and transfer function of the system allows you to perform a stability analysis, assessment of the quality of regulation and correction of dynamic characteristics based on passport data elements of the drive. The research results can be used by engineers involved in the development of automatic control systems of special technological equipment. A mathematical model is proposed in the work enables the development of automatic control system, which will expand the functionality and efficiency of special technological equipment.

Author Biography

Татьяна Яковлевна Таванюк, Volodymyr Dahl East Ukrainian National University, ave. Soviet, 59, Severodonetsk, Ukraine, 93400

Candidate of Technical Sciences, Assistant Professor

Department of Machine Building, Machine Tools and Instruments

References

  1. Leshchenko, V. A. (1975). Gidravlicheskie slediashchie privody stankov s programmnym upravleniem. Moscow: Mashinostroenie, 288.
  2. Popov, D. N. (1976). Dinamika i regulirovanie gidro- i pnevmosistem. Moscow: Mashinostroenie, 424.
  3. Terskih, V. Z. (1976). Sravnitel'nyi analiz dinamicheskih svoistv drossel'nyh gidroprivodov. Izvestie vuzov. Mashinostroenie, 7, 59–62.
  4. Lu, H.-C., Lin, W.-C. (1993). Robust controller with disturbance rejection for hydraulic servo systems. IEEE Transactions on Industrial Electronics, Vol. 40, № 1, 157–162. doi:10.1109/41.184833
  5. Abramov, E. I., Kolesnichenko, K. A., Maslov, V. T. (1977). Elementy gidroprivoda. Kyiv: Tehnika, 320.
  6. Chuprakov, Yu. I. (1975). Elektrogidravlicheskie usiliteli. Moscow: MADI, 124.
  7. Sastry, S. (1999). Nonlinear Systems. Interdisciplinary Applied Mathematics. New York: Springer, 700. doi:10.1007/978-1-4757-3108-8
  8. Sveshnikov, V. K., Usov, A. A. (1988). Stanochnye gidroprivody. Ed. 2. Moscow: Mashinostroenie, 512.
  9. Hespanha, J. (2009). Linear Systems Theory. Princeton Press, 280.
  10. Dorf, R., Bishop, R. (2002). Sovremennye sistemy upravleniia. Moscow: Laboratoriia Bazovyh Znanii, 831.
  11. Yang, W. Y., Cao, W., Chung, T.-S., Morris, J. (2005). Applied Numerical Methods Using MATLAB®. John Wiley & Sons, 510. doi:10.1002/0471705195
  12. Sokolova, Ya. V., Tavanyuk, T. Ya., Sokolov, V. I. (2010). Nelineinaia matematicheskaia model' elektrogidravlicheskogo slediashchego privoda s drossel'nym regulirovaniem. Visnyk Skhidnoukrainskoho natsionalnoho universytetu im. Volodymyra Dalia, 10 (152), 168–175.

Published

2015-11-26

How to Cite

Таванюк, Т. Я. (2015). Determination of transfer functions of the automatic electrohydraulic drive for special process equipment. Technology Audit and Production Reserves, 6(3(26), 35–39. https://doi.org/10.15587/2312-8372.2015.57174

Issue

Section

Systems and Control Processes: Original Research