Simulation of nickel ions extraction from combined solutions

Authors

  • Геннадій Геннадійович Афонін National Technical University of Ukraine «Kyiv Polytechnic Institute», 37 Peremogy ave., Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0003-0638-7915
  • Юрій Олександрович Безносик National Technical University of Ukraine «Kyiv Polytechnic Institute», 37 Peremogy ave., Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0001-7425-807X
  • Юлія Сергіївна Дзязько V. I. Vernadsky Institute of General and Inorganic Chemistry of the Ukrainian National Academy of Sciences, 32-34 Acad. Palladina Ave., 03680, Kyiv, Ukraine https://orcid.org/0000-0003-3599-9558
  • Денис Миколайович Складанний National Technical University of Ukraine «Kyiv Polytechnic Institute», 37 Peremogy ave., Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0003-3624-5336
  • Олена Сергіївна Бондаренко National Technical University of Ukraine «Kyiv Polytechnic Institute», 37 Peremogy ave., Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0001-6534-5542

DOI:

https://doi.org/10.15587/2312-8372.2016.58747

Keywords:

ion exchange, water treatment, nickel ions, calcium ions, magnesium ions, mathematical model, experiment planning

Abstract

This work is devoted to the problem of selective nickel ions extraction from dilute solutions by studying patterns ion exchange depending on the mass transfer, hydrodynamic and, in particular, concentration factors. To calculate the ion exchange process usually use cumbersome models that involve the use of parameters such as diffusion coefficients of ions in the solution and ionite, exchange capacity of the last, selectivity ratios, ionite particle size, ionite height, rate of  solution. However, the actual problem is the creation of a formalized process model in a dynamic mode that minimizes the number of parameters, eliminating diffusion selectivity coefficients.

The most rational method of experimental study of dynamical laws are mathematical experiment planning. The advantage of this method is that it does not require information about the mechanism of the process and therefore available even non-specialists in the field of ion exchange.

Regression equation for accurately calculating the parameters of the ion exchange process, which is studied in the accepted range of variation factors, was obtained. Volume of solution that clears by the unit of ionite weight, duration of the filtration cycle and working volumetric ionite capacity are taken as the variables. The studied factors were concentration of the sorbed ion; concentration of other ions; pH; specific load. Regressive dependences for polymer and organic-inorganic ionite were obtained. The test model adequacy was made by comparing reproducibility and adequacy dispersion.

According to the model it was made an optimization to determine the parameters, which allow obtaining maximum value of breakthrough capacity of nickel ions. Finding the optimum values for both ionites it can be concluded that there are effective organic-inorganic ion exchangers, which allows more clear solution of metal ions about 100 ml.

Using these models we can get the value of breakthrough capacity for each ionite and choose the best of them without experiment. The models can be used to calculate the ion exchange and sorption processes aimed at extracting of some components from the combined solution.

Author Biographies

Геннадій Геннадійович Афонін, National Technical University of Ukraine «Kyiv Polytechnic Institute», 37 Peremogy ave., Kyiv, Ukraine, 03056

Department of Cybernetics of Chemical Technology Processes

Юрій Олександрович Безносик, National Technical University of Ukraine «Kyiv Polytechnic Institute», 37 Peremogy ave., Kyiv, Ukraine, 03056

Candidate of Technical Sciences, Associate Professor

Department of Cybernetics of Chemical Technology Processes

Юлія Сергіївна Дзязько, V. I. Vernadsky Institute of General and Inorganic Chemistry of the Ukrainian National Academy of Sciences, 32-34 Acad. Palladina Ave., 03680, Kyiv

Doctor of Chemical Sciences, Senior Researcher

Department of sorption & membrane technologies and materials

Денис Миколайович Складанний, National Technical University of Ukraine «Kyiv Polytechnic Institute», 37 Peremogy ave., Kyiv, Ukraine, 03056

Candidate of Technical Sciences, Associate Professor

Department of Cybernetics of Chemical Technology Processes

Олена Сергіївна Бондаренко, National Technical University of Ukraine «Kyiv Polytechnic Institute», 37 Peremogy ave., Kyiv, Ukraine, 03056

Candidate of Technical Sciences, Associate Professor

Department of Cybernetics of Chemical Technology Processes

References

  1. Helfferich, F. (1994). Ion Exchange. New York, USA: Dover, 624. doi:10.1039/9781847551184
  2. Lin, S. H., Kiang, C. D. (2003, April). Chromic acid recovery from waste acid solution by an ion exchange process: equilibrium and column ion exchange modeling. Chemical Engineering Journal, Vol. 92, № 1-3, 193–199. doi:10.1016/s1385-8947(02)00140-7
  3. Ben-Shebil, S., Alkan-Sungur, A., Özdural, A. R. (2007, December). Fixed-bed ion exchange columns operating under non-equilibrium conditions: Estimation of mass transfer properties via non-equilibrium modeling. Reactive and Functional Polymers, Vol. 67, № 12, 1540–1547. doi:10.1016/j.reactfunctpolym.2007.07.040
  4. Dzyazko, Y. C., Ponomareva, L. N., Volfkovich, Y. M., Sosenkin, V. E. (2012, May 5). Effect of the porous structure of polymer on the kinetics of Ni2+ exchange on hybrid inorganic-organic ionites. Zhurnal Fizicheskoi Khimii, Vol. 86, № 6, 1019–1025. doi:10.1134/s0036024412060088
  5. Spellman, F. R. (2008). Handbook of Water and Wastewater Treatment Plant Operations. Boca Raton: CRC Press, 521. doi:10.1201/9781420075311
  6. Srivastava, V. C., Mall, I. D., Mishra, I. M. (2009, January). Competitive adsorption of cadmium(II) and nickel(II) metal ions from aqueous solution onto rice husk ash. Chemical Engineering and Processing: Process Intensification, Vol. 48, № 1, 370–379. doi:10.1016/j.cep.2008.05.001
  7. Ashirov, A. (1983). Ionoobmennaia ochistka stochnyh vod, rastvorov i gazov. Leningrad: Khimiia, 295.
  8. Seniavin, M. M. (1980). Ionnyi obmen v tehnologii i analize neorganicheskih veshchestv. Moscow: Khimiia, 272.
  9. Ruzinov, L. P., Slobodchikova, R. I. (1980). Planirovanie eksperimenta v himii i himicheskoi tehnologii. Moscow: Khimiia, 280.
  10. Ahnazarova, S. L., Kafarov, V. V. (1978). Optimizatsiia eksperimenta v himii i himicheskoi tehnologii. Moscow: Vysshaia shkola, 319.
  11. Bondar', A. G., Statiuha, G. A., Potiazhenko, I. A. (1980). Planirovanie eksperimenta pri optimizatsii protsessov himicheskoi tehnologii. Kyiv: Vishcha shkola, 264.
  12. Brodskii, V. Z., Brodskii, L. I., Golikova, T. I. (1982). Tablitsy planov eksperimenta dlia faktornyh i polinomial'nyh modelei. Moscow: Metallurgiia, 753.
  13. Afonin, G., Beznosyk, Yu., Dzyazko, Yu., Ponomareva, L. (2015). Modeling of Ni2+ exchange on the strong acid ion-exchange resin and the organic-inorganic ion exchanger. Technology Audit And Production Reserves, 2(4(22)), 63–67. doi:10.15587/2312-8372.2015.40640
  14. Dzyazko, Y. S., Ponomaryova, L. N., Volfkovich, Y. M., Trachevskii, V. V., Palchik, A. V. (2014, November). Ion-exchange resin modified with aggregated nanoparticles of zirconium hydrophosphate. Morphology and functional properties. Microporous and Mesoporous Materials, Vol. 198, 55–62. doi:10.1016/j.micromeso.2014.07.010
  15. Dzyazko, Yu. S., Ponomaryova, L. N., Beliakov, V. N., Volfkovich, Yu. M., Sosenkin, V. E. (2012). Organo-neorganichskie ionity dlia izvlecheniia toksichnyh primesei iz vodnyh rastvorov. Sorbtsionnye i hromatograficheskie protsessy, Vol. 12, № 4, 554–562.
  16. Statiukha, H. O., Skladannyi, D. M., Bondarenko, O. S. (2011). Vstup do planuvannia optymalnoho eksperymentu. Kyiv: NTUU «KPI», 124.

Published

2016-01-21

How to Cite

Афонін, Г. Г., Безносик, Ю. О., Дзязько, Ю. С., Складанний, Д. М., & Бондаренко, О. С. (2016). Simulation of nickel ions extraction from combined solutions. Technology Audit and Production Reserves, 1(1(27), 53–57. https://doi.org/10.15587/2312-8372.2016.58747