Development of fuzzy controller for maintaining temperature component of comfortable microclimate
DOI:
https://doi.org/10.15587/2312-8372.2016.59037Keywords:
regulator, fuzzy logic, fuzzification, defuzzification, terms, membership function, nonlinear systemsAbstract
The prospects of controllers based on fuzzy logic for maintaining the temperature component of systems for climate control in buildings and the results of research in this area are discussed in the article. The main aim of the research is developing automatic controller of temperature microclimate condition on the basis of technology of fuzzy sets, providing minimal overshoot and the transition process in the task of stabilizing the temperature. Using this method can reduce the overshoot of controlled parameters of ventilation systems, reduce their identification time and increase the robustness of the controller in the presence of incomplete information about the object control compared to regular algorithms. Ways to optimize the control system for maintaining the set quality parameters are outlined. It is proposed to use the controller based on fuzzy logic for air conditioning systems, in which there are uncontrollable external disturbances and there is incomplete information about the object of control. Research results can be applied by expert designers of automatic control systems involved in automation, the stages of development and control algorithms during commissioning works to reduce system setup time.
References
- Vychuzhanin, V. V. (2009). Povyshenie effektivnosti ekspluatatsii sudovoi sistemy komfortnogo konditsionirovaniia vozduha pri peremennyh nagruzkah. Odessa: ONMU, 206.
- Kulenko, M. S., Burenin, S. V. (2010). Researching Application of Fuzzy Controllers in Technological Processes Control Systems. Vestnik of Ivanovo State Power Engineering University, 2, 72–76.
- Blagodarov, D. A., Kostin, A. A., Safonov, Y. M., Tarasov, A. S. (2013). Intellectual control methods in ventilation and air conditioning systems. Vestnik of Ivanovo State Power Engineering University, 6, 70–73.
- Rotach, V. Ya. (1985). Teoriia avtomaticheskogo upravleniia teploenergeticheskimi protsessami. Moscow: Energatomizdat, 296.
- Rutkovskaia, D., Pilin'skii, M., Rutkovskii, L. (2006). Neironnye seti, geneticheskie algoritmy i nechetkie sistemy. Moscow: Goriachaia liniia – Telekom, 383.
- Kondratenko, Yu. P., Kondratenko, H. V., Melnyk, T. L. (2007). Syntez ta analiz vlastyvostei nechitkykh rehuliatoriv dlia stabilizatsii temperatury v sudnovykh prymishchenniakh. Avtomatizatsiia sudovyh tehnicheskih sredstv, 12, 53–67.
- Kudinov, Yu. I., Dorohov, I. N., Pashchenko, F. F. (2004). Nechetkie reguliatory i sistemy upravleniia. Problemy upravleniia, 3, 2–14.
- Demenkov, N. P. (2005). Nechetkoe upravlenie v tehnicheskih sistemah. Moscow: MSTU n. a. Baumana, 200.
- Holinko, I. M., Ladaniuk, A. P., Koshelieva, L. D. (2009). Dynamichna model teplovoho rezhymu kaloryfera. Informatsiini tekhnolohii ta kompiuterna inzheneriia, 3 (16), 59–63.
- Rotach, V. (1998). On Connection Between Traditional and Fuzzy PID Regulators. Proc. 6-th Zittau Fuzzy-Colloquium. Germany, Zittau, 86–90.
- Leonenkov, A. V. (2005). Nechetkoe modelirovanie v srede Matlab i fuzzyTECH. St. Petersburg: BHV-Peterburg, 736.
- Munasypov, R. A. (2014). Mnogorezhimnyi nechetkii reguliator s izmeniaemoi strukturoi. VSPU-2014. Moscow: IPU RAN, 2071–2077.
- Mamdani, E. H. (1974). Application of fuzzy algorithm for simple dynamic plant. Proceedings of the Institution of Electrical Engineers, Vol. 121, № 12, 1585–1588. doi:10.1049/piee.1974.0328
- Yesil, E., Guzelkaya, M., Eksin, I. (2004). Internal model control based fuzzy gain scheduling technique of PID controllers. Word Automation Congress, Vol. 17, 501–506.
- Singhala, P., Shah, D. N., Patel, B. (2014, January 31). Temperature Control using Fuzzy Logic. International Journal of Instrumentation and Control Systems, Vol. 4, № 1, 1–10. doi:10.5121/ijics.2014.4101
- Han, H., Su, C.-Y., Stepanenko, Y. (2001, April). Adaptive control of a class of nonlinear systems with nonlinearly parameterized fuzzy approximators. IEEE Transactions on Fuzzy Systems, Vol. 9, № 2, 315–323. doi:10.1109/91.919252
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Олександр Васильович Степанець, Андрій Вікторович Каракой
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.