Development and research of complex algorithm of inertial system for human motion parameters estimation

Authors

  • Сергій Леонідович Лакоза National Technical University of Ukraine «Kyiv Polytechnic Institute», Peremogy Avenue 37/1, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0001-6354-1611
  • Владислав Валентинович Мелешко National Technical University of Ukraine «Kyiv Polytechnic Institute», Peremogy Avenue 37/1, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0003-2401-5584

DOI:

https://doi.org/10.15587/2312-8372.2016.59150

Keywords:

biomechanical skeleton model, motion parameters estimation, complex algorithm, strapdown, INS

Abstract

Inertial motion capture is one most perspective technology for estimation of human motion parameters. Such systems use a network of inertial measurement units (IMUs) which are mounted on human body segments. To estimate kinematic motion parameters inertial motion capture systems (IMCS) is used data about body segments orientation. Algorithms which are used in IMCS are characterized by static and dynamic accuracy. Static accuracy of such systems is 0,2-0,5 degrees. But their dynamic accuracy during accelerating motions degrades to 2 degrees (RMS error). This study is intended for research and development of complex algorithm for work of one IMU of IMCS. Complex algorithm uses algorithm of strapdown inertial navigational system in geographical frame corrected by information of velocity and position data. These data are gotten using biomechanical skeleton model. The error level of such correction signals was estimated. A complex algorithm uses biomechanical velocities and positions to estimate velocity and position errors of data which are gotten from algorithm of strapdown system. These errors are used to form special correction signals in Poisson equation, equations for velocity and position calculation. It is shown effectiveness of proposed algorithm for kinematic human motion parameters estimation during accelerating segment motion. Maximal pitch and roll errors don’t exceed 0,8 degree. Positional RMS error is 0,04 m, velocity – 0,38 m/s. Such results show effectiveness of algorithm for estimation of segment orientation and position. Segment’s velocity signal has less error when it is gotten uses biomechanical skeleton model.

Author Biographies

Сергій Леонідович Лакоза, National Technical University of Ukraine «Kyiv Polytechnic Institute», Peremogy Avenue 37/1, Kyiv, Ukraine, 03056

Assistant

Department of instruments and system of orientation and navigation

Владислав Валентинович Мелешко, National Technical University of Ukraine «Kyiv Polytechnic Institute», Peremogy Avenue 37/1, Kyiv, Ukraine, 03056

Candidate of Technical Science, Associate Professor

Department of instruments and system of orientation and navigation

References

  1. Zhou, H., Hu, H. (2008, January). Human motion tracking for rehabilitation – A survey. Biomedical Signal Processing and Control, Vol. 3, № 1, 1–18. doi:10.1016/j.bspc.2007.09.001
  2. Chen, X. (2013). Human Motion Analysis with Wearable Inertial Sensors. University of Tennessee. Available: http://trace.tennessee.edu/utk_graddiss/2407
  3. Sigal, L., Black, M. J. (2006). Humaneva: Synchronized video and motion capture dataset for evaluation of articulated human motion. Technical Report CS-06-08. Brown Univertsity, 120. doi:10.1.1.84.1104
  4. Roetenberg, D., Luinge, H., Slycke, P. (2009). Xsens MVN: full 6DOF human motion tracking using miniature inertial sensors. Technical Report. Xsens Motion Technologies BV, 9. doi:10.1.1.569.9604
  5. DSuit Motion Capture System. (2015). Inertial Labs. Available: http://inertiallabs.com/3dsuit.html. Retrieved 2016, January 15.
  6. Bebek, O., Suster, M. A., Rajgopal, S., Fu, M. J., Huang, X., Cavusoglu, M. C. et al. (2010, November). Personal Navigation via High-Resolution Gait-Corrected Inertial Measurement Units. IEEE Transactions on Instrumentation and Measurement, Vol. 59, № 11, 3018–3027. doi:10.1109/tim.2010.2046595
  7. Meleshko, V., Nesterenko, O. (2011). Strapdown inertial navigation systems. Kirovograd: PolymedService, 172.
  8. Sabatini, A. M. (2005, February). Quaternion-based strap-down integration method for applications of inertial sensing to gait analysis. Medical & Biological Engineering & Computing, Vol. 43, № 1, 94–101. doi:10.1007/bf02345128
  9. Fourati, H., Manamanni, N., Afilal, L., Handrich, Y. (2011, January). A Nonlinear Filtering Approach for the Attitude and Dynamic Body Acceleration Estimation Based on Inertial and Magnetic Sensors: Bio-Logging Application. IEEE Sensors Journal, Vol. 11, № 1, 233–244. doi:10.1109/jsen.2010.2053353
  10. Lakoza, S. L., Meleshko, V. V. (2014). Attitude and heading reference system constructing with correction channels separation. Part 2. Algorithms of correction. Bulletin of National Technical University of Ukraine «Kyiv Polytechnic Institute». Series Instrument Making, 48, 2–11.
  11. Luinge, H. J., Veltink, P. H., Baten, C. T. M. (2007, January). Ambulatory measurement of arm orientation. Journal of Biomechanics, Vol. 40, № 1, 78–85. doi:10.1016/j.jbiomech.2005.11.011
  12. Yang, H., Ye, J. (2011, August). A calibration process for tracking upper limb motion with inertial sensors. 2011 IEEE International Conference on Mechatronics and Automation. Institute of Electrical & Electronics Engineers (IEEE), 618–623. doi:10.1109/icma.2011.5985732
  13. Chen, P., Li, J., Luo, M., Zhu, N. (2015). Real-Time Human Motion Capture Driven by a Wireless Sensor Network. International Journal of Computer Games Technology, Vol. 2015, 1–14. doi:10.1155/2015/695874
  14. Wu, G., van der Helm, F. C. T., (DirkJan) Veeger, H. E. J., Makhsous, M., Van Roy, P., Anglin, C. et al. (2005, May). ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion – Part II: shoulder, elbow, wrist and hand. Journal of Biomechanics, Vol. 38, № 5, 981–992. doi:10.1016/j.jbiomech.2004.05.042
  15. Precision ±1.7g, ±5g, ±18g Single-/Dual-Axis iMEMS Accelerometer ADXL103/ADXL203. (2004). Norwood: Analog Devices Inc. Available: www.analog.com/media/en/technical-documentation/data-sheets/ADXL103_203.pdf
  16. Yuan, Q., Chen, I.-M., Sin, A. W. (2013, May). Method to calibrate the skeleton model using orientation sensors. 2013 IEEE International Conference on Robotics and Automation. Institute of Electrical & Electronics Engineers (IEEE), 5297–5302. doi:10.1109/icra.2013.6631335

Published

2016-01-21

How to Cite

Лакоза, С. Л., & Мелешко, В. В. (2016). Development and research of complex algorithm of inertial system for human motion parameters estimation. Technology Audit and Production Reserves, 1(2(27), 56–68. https://doi.org/10.15587/2312-8372.2016.59150