Mathematical modeling and optimization of transiant thermoelectric cooling process

Authors

DOI:

https://doi.org/10.15587/2312-8372.2016.59320

Keywords:

transient thermoelectric cooling, mathematical modeling, optimal control, distributed parameter object

Abstract

Detailed theoretical and experimental studies of thermoelectric cooling, as well as its optimization carried out mainly for the steady state operation of the cooling modules. The process of transient cooling insufficiently studied. However, deeper cooling than under stationary conditions may occur in transient modes when optimization. Optimization problems of transient thermoelectric cooling are problems of optimal control of objects with distributed parameters. The article suggests a generalized mathematical model of transient cooling. This model takes into account the main physical factors that affect the process. The problem of optimal control of transient mode of operation of the thermoelectric cooler with an arbitrary number of stages is formulated. It is proposed a method of solving it. The method consists in sampling the object and moving the object with lumped parameters, which is used to optimize the Pontryagin maximum principle. The article gives examples of computer modeling of optimal process control functions of transient thermoelectric cooling. These functions can be used in the construction and auto-calibration PI and PID controllers for the automatic process control of transient cooling in the thermoelectric devices for different purposes.

Author Biography

Максим Петрович Коцур, Taras Shevchenko National University of Kyiv, Prospekt Hlushkov 4D, Kyiv, Ukraine, 03680

PhD student

Department of Systems Analysis and Theory of Decision Making

References

  1. In: Vainer, A. A. (1983). Termoelektricheskie ohladiteli. Moscow: Radio i sviaz', 176.
  2. Kaganov, M. A., Privin, M. R. (1970). Termoelektricheskie teplovye nasosy. Leningrad: Energiia, 174.
  3. Ahmed, N. U. (2003). Distributed Parameter Systems. Encyclopedia of Physical Science and Technology. Elsevier BV, 561–587. doi:10.1016/b0-12-227410-5/00183-6
  4. Stilbans, L. S., Fedorovich, N. A. (1958). O rabote ohlazhdaiushchih termoelementov v nestatsionarnom rezhime. Zhurnal tehnicheskoi fiziki, Vol. 28, № 3, 12–15.
  5. Parrott, J. E. (1960). Interpretation of stationary and transient behaviour of refrigerating thermocouples. Solid-State Electronics, Vol. 1, № 2, 135–143. doi:10.1016/0038-1101(60)90045-9
  6. Babin, V. P., Iordanishvili, E. K. (1969). O povyshenii effekta termoelektricheskogo ohlazhdeniia pri rabote termoelementov v nestatsionarnom rezhime. Zhurnal tehnicheskoi fiziki, Vol. 39, № 2, 399–406.
  7. Landeсker, K., Findleу, A. W. (1961). Study of transient behavior of Peltier junctions. Solid-State Electronics, Vol. 3, № 3-4, 239–260. doi:10.1016/0038-1101(61)90007-7
  8. Hoyos, G. E., Rao, K. R., Jerger, D. (1977). Fast transient response of novel Peltier junctions. Energy Conversion, Vol. 17, № 1, 45–54. doi:10.1016/0013-7480(77)90057-2
  9. Grinberg, G. A. (1968). O nestatsionarnom rezhime raboty ohlazhdaiushchih termoelementov. Zhurnal tehnicheskoi fiziki, Vol. 38, № 3, 418–424.
  10. Rivkin, A. S. (1973). Optimal'noe upravlenie nestatsionarnym protsessom termoelektricheskogo ohlazhdeniia. Zhurnal tehnicheskoi fiziki, Vol. 43, № 7, 1563–1570.
  11. Idnurm, M., Landecker, K. (1973). Experiments with Peltier Junctions Pulsed with High Transient Currents. Journal of Applied Physics, Vol. 34, № 6, 1806–1810. doi:10.1063/1.1702684
  12. Field, R. L., Blum, H. A. (1979). Fast transient behavior of thermoelectric coolers with high current pulse and finite cold junction. Energy Conversion, Vol. 19, № 3, 159–165. doi:10.1016/0013-7480(79)90023-8
  13. Iordanishvili, E. K., Babin, V. P. (1983). Nestatsionarnye protsessy v termoelektricheskih i termomagnitnyh sistemah preobrazovaniia energii. Moscow: Nauka, 216.
  14. Snyder, G. J., Fleurial, J.-P., Caillat, T., Yang, R. G., Chen, G. J. (2002). Supercooling of Peltier cooler using a current pulse. Journal of Applied Physics, Vol. 92, № 3, 1564–1569. doi:10.1063/1.1489713.
  15. Yang, R. G., Chen, G. J., Kumar, A. R., Snyder, G. J., Fleurial, J.-P. (2005). Transient cooling of thermoelectric coolers and its applications for microdevices. Energy Conversion and Management, Vol. 46, № 9-10, 1407–1421. doi:10.1016/j.enconman.2004.07.004
  16. Snarskii, A. A., Bezsudnov, I. V. (2015). Rotating thermoelectric device in periodic steady state. Energy Conversion and Management, Vol. 94, 103–111. doi:10.1016/j.enconman.2015.01.058
  17. Shen, L. M., Chen, H. X., Xiao, F., Yang, Y. X., Wang, S. W. (2014). The step-change cooling performance of miniature thermoelectric module for pulse laser. Energy Conversion and Management, Vol. 80, 39–45. doi:10.1016/j.enconman.2014.01.003
  18. Shen, L. M., Xiao, F., Chen, H. X., Wang, S. W. (2012). Numerical and experimental analysis of transient supercooling effect of voltage pulse on thermoelectric element. International Journal of Refrigeration, Vol. 35, № 4, 1156–1165. doi:10.1016/j.ijrefrig.2012.02.004
  19. Ma, M., Yu, L. (2014). A numerical study on the temperature overshoot characteristic of a realistic thermoelectric module under a current pulse operation. International Journal of Heat and Mass Transfer, Vol. 72, 234–241. doi:10.1016/j.ijheatmasstransfer.2014.01.017
  20. Thonhauser, T., Mahan, G. D., Zikatanov, L., Roe, J. (2004). Improved supercooling in transient thermoelectric. Applied Physics Letters, Vol. 85, № 15, 3247–3249. doi:10.1063/1.1806276
  21. Mao, J. N., Chen, H. X., Jia, H., Qian, X. L. (2012). The transient behavior of Peltier junctions pulsed with supercooling. Journal of Applied Physics, Vol. 112, № 1, 014514-1–014514-9. doi:10.1063/1.4735469
  22. Cheng, C.-H., Huang, S.-Y., Cheng, T.-C. (2010). A three-dimensional theoretical model for predicting transient thermal behavior of thermoelectric coolers. International Journal of Heat and Mass Transfer, Vol. 53, № 9-10, 2001–2011. doi:10.1016/j.ijheatmasstransfer.2009.12.056
  23. Hao, L. V., Wang, X.-D., Wang, T.-H., Meng, J.-H. (2015). Optimal pulse current shape for transient supercooling of thermoelectric cooler. Energy, Vol. 83, 788–796. doi:10.1016/j.energy.2015.02.092
  24. Pontriagin, L. S., Boltianskii, V. G., Gamkrelidze, R. V., Mishchenko, E. F. (1976). Matematicheskaia teoriia optimal'nogo upravleniia. Moscow: Nauka, 392.

Published

2016-01-21

How to Cite

Коцур, М. П. (2016). Mathematical modeling and optimization of transiant thermoelectric cooling process. Technology Audit and Production Reserves, 1(2(27), 29–34. https://doi.org/10.15587/2312-8372.2016.59320