Mathematical modeling and optimization of transiant thermoelectric cooling process
DOI:
https://doi.org/10.15587/2312-8372.2016.59320Keywords:
transient thermoelectric cooling, mathematical modeling, optimal control, distributed parameter objectAbstract
Detailed theoretical and experimental studies of thermoelectric cooling, as well as its optimization carried out mainly for the steady state operation of the cooling modules. The process of transient cooling insufficiently studied. However, deeper cooling than under stationary conditions may occur in transient modes when optimization. Optimization problems of transient thermoelectric cooling are problems of optimal control of objects with distributed parameters. The article suggests a generalized mathematical model of transient cooling. This model takes into account the main physical factors that affect the process. The problem of optimal control of transient mode of operation of the thermoelectric cooler with an arbitrary number of stages is formulated. It is proposed a method of solving it. The method consists in sampling the object and moving the object with lumped parameters, which is used to optimize the Pontryagin maximum principle. The article gives examples of computer modeling of optimal process control functions of transient thermoelectric cooling. These functions can be used in the construction and auto-calibration PI and PID controllers for the automatic process control of transient cooling in the thermoelectric devices for different purposes.
References
- In: Vainer, A. A. (1983). Termoelektricheskie ohladiteli. Moscow: Radio i sviaz', 176.
- Kaganov, M. A., Privin, M. R. (1970). Termoelektricheskie teplovye nasosy. Leningrad: Energiia, 174.
- Ahmed, N. U. (2003). Distributed Parameter Systems. Encyclopedia of Physical Science and Technology. Elsevier BV, 561–587. doi:10.1016/b0-12-227410-5/00183-6
- Stilbans, L. S., Fedorovich, N. A. (1958). O rabote ohlazhdaiushchih termoelementov v nestatsionarnom rezhime. Zhurnal tehnicheskoi fiziki, Vol. 28, № 3, 12–15.
- Parrott, J. E. (1960). Interpretation of stationary and transient behaviour of refrigerating thermocouples. Solid-State Electronics, Vol. 1, № 2, 135–143. doi:10.1016/0038-1101(60)90045-9
- Babin, V. P., Iordanishvili, E. K. (1969). O povyshenii effekta termoelektricheskogo ohlazhdeniia pri rabote termoelementov v nestatsionarnom rezhime. Zhurnal tehnicheskoi fiziki, Vol. 39, № 2, 399–406.
- Landeсker, K., Findleу, A. W. (1961). Study of transient behavior of Peltier junctions. Solid-State Electronics, Vol. 3, № 3-4, 239–260. doi:10.1016/0038-1101(61)90007-7
- Hoyos, G. E., Rao, K. R., Jerger, D. (1977). Fast transient response of novel Peltier junctions. Energy Conversion, Vol. 17, № 1, 45–54. doi:10.1016/0013-7480(77)90057-2
- Grinberg, G. A. (1968). O nestatsionarnom rezhime raboty ohlazhdaiushchih termoelementov. Zhurnal tehnicheskoi fiziki, Vol. 38, № 3, 418–424.
- Rivkin, A. S. (1973). Optimal'noe upravlenie nestatsionarnym protsessom termoelektricheskogo ohlazhdeniia. Zhurnal tehnicheskoi fiziki, Vol. 43, № 7, 1563–1570.
- Idnurm, M., Landecker, K. (1973). Experiments with Peltier Junctions Pulsed with High Transient Currents. Journal of Applied Physics, Vol. 34, № 6, 1806–1810. doi:10.1063/1.1702684
- Field, R. L., Blum, H. A. (1979). Fast transient behavior of thermoelectric coolers with high current pulse and finite cold junction. Energy Conversion, Vol. 19, № 3, 159–165. doi:10.1016/0013-7480(79)90023-8
- Iordanishvili, E. K., Babin, V. P. (1983). Nestatsionarnye protsessy v termoelektricheskih i termomagnitnyh sistemah preobrazovaniia energii. Moscow: Nauka, 216.
- Snyder, G. J., Fleurial, J.-P., Caillat, T., Yang, R. G., Chen, G. J. (2002). Supercooling of Peltier cooler using a current pulse. Journal of Applied Physics, Vol. 92, № 3, 1564–1569. doi:10.1063/1.1489713.
- Yang, R. G., Chen, G. J., Kumar, A. R., Snyder, G. J., Fleurial, J.-P. (2005). Transient cooling of thermoelectric coolers and its applications for microdevices. Energy Conversion and Management, Vol. 46, № 9-10, 1407–1421. doi:10.1016/j.enconman.2004.07.004
- Snarskii, A. A., Bezsudnov, I. V. (2015). Rotating thermoelectric device in periodic steady state. Energy Conversion and Management, Vol. 94, 103–111. doi:10.1016/j.enconman.2015.01.058
- Shen, L. M., Chen, H. X., Xiao, F., Yang, Y. X., Wang, S. W. (2014). The step-change cooling performance of miniature thermoelectric module for pulse laser. Energy Conversion and Management, Vol. 80, 39–45. doi:10.1016/j.enconman.2014.01.003
- Shen, L. M., Xiao, F., Chen, H. X., Wang, S. W. (2012). Numerical and experimental analysis of transient supercooling effect of voltage pulse on thermoelectric element. International Journal of Refrigeration, Vol. 35, № 4, 1156–1165. doi:10.1016/j.ijrefrig.2012.02.004
- Ma, M., Yu, L. (2014). A numerical study on the temperature overshoot characteristic of a realistic thermoelectric module under a current pulse operation. International Journal of Heat and Mass Transfer, Vol. 72, 234–241. doi:10.1016/j.ijheatmasstransfer.2014.01.017
- Thonhauser, T., Mahan, G. D., Zikatanov, L., Roe, J. (2004). Improved supercooling in transient thermoelectric. Applied Physics Letters, Vol. 85, № 15, 3247–3249. doi:10.1063/1.1806276
- Mao, J. N., Chen, H. X., Jia, H., Qian, X. L. (2012). The transient behavior of Peltier junctions pulsed with supercooling. Journal of Applied Physics, Vol. 112, № 1, 014514-1–014514-9. doi:10.1063/1.4735469
- Cheng, C.-H., Huang, S.-Y., Cheng, T.-C. (2010). A three-dimensional theoretical model for predicting transient thermal behavior of thermoelectric coolers. International Journal of Heat and Mass Transfer, Vol. 53, № 9-10, 2001–2011. doi:10.1016/j.ijheatmasstransfer.2009.12.056
- Hao, L. V., Wang, X.-D., Wang, T.-H., Meng, J.-H. (2015). Optimal pulse current shape for transient supercooling of thermoelectric cooler. Energy, Vol. 83, 788–796. doi:10.1016/j.energy.2015.02.092
- Pontriagin, L. S., Boltianskii, V. G., Gamkrelidze, R. V., Mishchenko, E. F. (1976). Matematicheskaia teoriia optimal'nogo upravleniia. Moscow: Nauka, 392.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Максим Петрович Коцур
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.