Development of the methods of coupling quality measurement between steel-aluminium castings elements

Authors

DOI:

https://doi.org/10.15587/2312-8372.2016.59836

Keywords:

metrological support of measurement, bimetallic castings, temperature distribution, weldability quality of the elements

Abstract

Structural components made of the same metal are not optimal in terms of the ratio of their shape and weight to mechanical properties, chemical resistance, wear characteristics, etc. Significant deficiencies have "single alloy" when trying to simultaneously solve the double, or even triple problems, such as to provide the required strength for some detail at a high thermal conductivity and low cost. Meet these conflicting demands is only possible through the use of bimetallic products. In the manufacture of such products it is drastically increased demands on the culture of production and, above all, to the strict maintenance of process parameters within the strict boundaries. In these circumstances, comes to the fore the need for methods and tools to accurately measure these parameters.

Methods and means for measuring the surface temperature of the steel insert are developed for automated control systems of bimetallic casting process, including the use for primary metrological data of the thermal imager and the further computer processing of digital video stream from the latter. Methods and means of measuring the degree of weldability are developed for automated control systems of bimetallic casting process, which are non-destructive ultrasonic testing of the inner cylindrical surface of the steel-tube insertion at the complex translational and rotational motion of the measuring head. Advantages of the main characteristics of the proposed methods in relation to their prototypes are experimentally confirmed.

The results have been implemented in a foundry with a positive technical effect.

Author Biographies

Оксана Степанівна Савєльєва, Odessa National Polytechnic University, ave. Shevchenko 1, Odessa, Ukraine, 65044

Doctor of Technical Sciences, Associate Professor

Department of Oil, Gas and Chemical Mechanical Engineering 

Ігор Валентинович Прокопович, Odessa National Polytechnic University, ave. Shevchenko 1, Odessa, Ukraine, 65044

Candidate of Technical Sciences, Associate Professor

Department of Technology and Management of the Casting Process

Олександр Васильович Шмараєв, Odessa National Polytechnic University, ave. Shevchenko 1, Odessa, Ukraine, 65044

Department of Machine Tools, Metrology and Certification

Маріанна Олександрівна Духаніна, Odessa National Polytechnic University, ave. Shevchenko 1, Odessa, Ukraine, 65044

Department of Computer-Aided Design Technologies

Сергій Вікторович Кошулян, Odessa National Polytechnic University, ave. Shevchenko 1, Odessa, Ukraine, 65044

Department of Oil, Gas and Chemical Mechanical Engineering

Ігор Анатолійович Саух, Odessa National Polytechnic University, ave. Shevchenko 1, Odessa, Ukraine, 65044

Department of Oil, Gas and Chemical Mechanical Engineering

References

  1. Saveleva, O., Prokopovich, I., Shmaraev, A. (2015). Development of metrological support of process control system of injection molding of bimetallic castings. Eastern-European Journal Of Enterprise Technologies, 2(1(74)), 32–38. doi:10.15587/1729-4061.2015.40062
  2. Oborskii, G. A., Riazantsev, V. M., Shihireva, Yu. V. (2013). Izmerenie parametrov vnutrennih teplovyh protsessov po infrakrasnym videopotokam ot poverhnosti detali. Suchasni tekhnolohii v mashynobuduvanni, 8, 124–132.
  3. Oborskii, G. A., Prokopovich, I. V., Shmaraev, A. V., Dukhanina, M. O. (2015). Metrologicheskoe obespechenie kontrolia kachestva bimetallicheskih trub. Materialy 2-oi Vseukrainskoi konferentsii «Informatsiini tekhnolohii v osviti, tekhnitsi ta promyslovosti 2015». Ivano-Frankivsk, 105–106.
  4. Afonin, A. V., Niuport, R. K., Poliakov, V. S. (2000). Infrakrasnaia termografiia v energetike. Vol. 1. Osnovy infrakrasnoi termografii. St. Petersburg: PEIPK, 240.
  5. Gossorg, J. (1988). Infrakrasnaia termografiia. Osnovy. Tehnika. Primenenie. Moscow: Mir, 146.
  6. Nazarov, N. G. (2002). Metrologiia. Osnovnye poniatiia i matematicheskie modeli. Moscow: Vysshaia shkola, 348.
  7. Kolchkov, V. I. (2010). Metrologiia, standartizatsiia i sertifikatsiia. Moscow: Vlados, 398.
  8. Shainoga, G. M., Prokopovich, І. V. (2004). Novi perspektyvy rozvytku tochnoho lyttia. Materialy 39-oi naukovoi konferentsii «Suchasni informatsiini tekhnolohii ta telekomunikatsiini merezhi». Odesa, 132.
  9. Stanovskii, P. A., Bovnegra, L. V., Shihireva, Yu. V. (2012). Avtomatizirovannyi monitoring protekaniia tehnologicheskih protsessov s pomoshch'iu nizkochastotnyh videopotokov. Zbirnyk naukovykh prats Kirovohradskoho natsionalnoho tekhnichnoho universytetu, Vol. 25, Part II, 70–74.
  10. Stanovska, T. P., Duhanina, M. A., Shihireva, Yu. V. (2013). Infrakrasnyi metod izmereniia teplovyh parametrov zatverdevaniia betona. Refrigeration engineering and technology, 2 (142), 112–115.
  11. ISO 13790. Thermal performance of buildings – Calculation of energy use for space heating. (2004). Sweden, 10–31. doi:10.3403/03067764
  12. Valancius, K., Skrinska, A. (2002). Transient heat conduction process in the multilayer wall under the influence of solar radiation. Improving human potential program. Almeria, Spain: PSA, 179–185.
  13. Prokopovich, I. V., Shihireva, Yu. V., Dukhanina, M. A., Shmaraev, A. V. (2013). Informatsionnyi metod izmereniia teplovyh parametrov po infrakrasnym potokam ot poverhnosti detali. Materialy mizhnarodnoi naukovo-praktychnoi konferentsii «Informatsiini tekhnolohii ta informatsiina bezpeka v nautsi, tekhnitsi ta navchanni «Infotekh–2013»». Sevastopol, 53–54.
  14. Stanovskii, A., Shmaraev, A., Prokopovich, I., Purich, D., Shvets, P., Bondarenko, V. (2015). Methods of converting multidimensional measuring information to a number by means of differential equations in partial derivatives. Eastern-European Journal Of Enterprise Technologies, 4(4(76)), 56–62. doi:10.15587/1729-4061.2015.47581
  15. Huhnin, V. P., Oborskyi, H. O. (2011). Metrolohichne zabezpechennia ta povirka zasobiv vymiriuvalnoi tekhniky fizychnykh velychyn. Kyiv: Nauka i tekhnika, 220.
  16. Oborskyi, H. O., Slobodianyk, P. T. (2005). Vymiriuvannia neelektrychnykh velychyn. Kyiv: Nauka i tekhnika, 200.
  17. Kretov, E. F. (2011). Ultrazvukovaia defektoskopiia v energomashinostroenii. St. Petersburg: SVEN, 312.
  18. Szwed, M., Lublinska, K., Gloc, M., Manaj, W., Kurzydlowski, K. J. (2009). Steel clad plates hydrogen degradation evaluation using ultrasonic defectoscopy method. Advances in Manufacturing Science and Technology, Vol. 33, № 4, 51–57.

Published

2016-01-21

How to Cite

Савєльєва, О. С., Прокопович, І. В., Шмараєв, О. В., Духаніна, М. О., Кошулян, С. В., & Саух, І. А. (2016). Development of the methods of coupling quality measurement between steel-aluminium castings elements. Technology Audit and Production Reserves, 1(2(27), 68–73. https://doi.org/10.15587/2312-8372.2016.59836