Analysis of tribotechnical characteristics of self-fluxing coating under rolling and sliding at non-stationary loading

Authors

DOI:

https://doi.org/10.15587/2312-8372.2016.63036

Keywords:

self-fluxing coatings, wear, anti-friction properties, micro-hardness, non-stationary loading

Abstract

This article discusses the possibility of self-fluxing nickel-based alloy for the friction pairs operating under rolling with sliding. The aim of research was to determine the kinetics of changes in the physical and mechanical, anti-wear and anti-friction properties of the sprayed coating of self-fluxing powder PG-AN9 among transmission oil. The method of assessment of tribotechnical properties of the coating is proposed in the start-up mode at step increase in load to the appearance of the first signs of the setting of the contact surfaces. It was established an increase of the normal operation period in sprayed coatings at 5,42 times for the coating thickness increases to 1,2 mm due to effective lubricating effect, low friction coefficient, reducing the specific friction work and reducing the degree of surface coating layers plasticizing by the lubricant components. The results can be used by specialists in the field of repairing and rebuilding worn parts of machines and mechanisms.

Author Biographies

Оксана Александровна Микосянчик, National Aviation University, Kosmonavta Komarova avenue, 1, Kyiv, Ukraine, 03058

Candidate of Technical Sciences, Associate Professor

Department of Life Safety

Борис Артемович Ляшенко, G. S. Pisarenko Institute for Problems of Strength, Timiryazevskaya street, 2, Kyiv, 01014

Doctor of Technical Sciences, Professor, Head of the Department

Department of Hardening the surface of structural elements

Максим Сергеевич Агеев, Kherson State Maritime Academy, Ushakova avenue, 20, Kherson, 73000

Candidate of Technical Sciences, Associate Professor

Department of Ship Propulsion Plants Operation and General Engineering Training

Виталий Николаевич Лопата, National Technical University of Ukraine «Kyiv Polytechnic Institute», 37, Prospect Peremohy, 03056, Kyiv-56

Candidate of Technical Sciences, Associate Professor

Department of Surface Engineering

References

  1. In: Druzhinin, L. K., Kudinov, V. V. (1973). Poluchenie pokrytii vysokotemperaturnym raspyleniem. Moscow: Atomizdat, 312.
  2. Pronikov, A. S. (1972). Nadezhnost' i dolgovechnost' mashin i oborudovaniia (opyt i teoreticheskie issledovaniia). Moscow: Izdatel'stvo standartov, 314.
  3. Hemmati, I., Ocelík, V., De Hosson, J. T. M. (2013). Effects of the Alloy Composition on Phase Constitution and Properties of Laser Deposited Ni-Cr-B-Si Coatings. Physics Procedia, Vol. 41, 302–311. doi:10.1016/j.phpro.2013.03.082
  4. Vitiaz', P. A., Ivashko, V. S., Il'iushchenko, A. F. et al. (1998). Teoriia i praktika naneseniia zashchitnyh pokrytii. Minsk: Belaruskaia navuka, 583.
  5. Gadalov, V. N., Pavlov, E. V., Pavlov, I. V. et al. (2004). Elektroiskrovaia obrabotka instrumental'nyh stalei poroshkovymi samofliusuiushchimisia splavami tipa PG-SR. Sbornik materialov VII mezhd. nauchn.-tehn. konf., 25-26 maia 2004 g. «Mediko-ekologicheskie informatsionnye tehnologii – 2004». Kursk: KGTU, 202–206.
  6. Hemmati, I., Ocelík, V., De Hosson, J. T. M. (2011, September 21). Evolution of microstructure and properties in laser cladding of a Ni-Cr-B-Si hardfacing alloy. Surface Effects and Contact Mechanics, Vol. 71, 287–296. doi:10.2495/secm110251
  7. Panteleenko, F. I., Lialiakin, V. P., Ivanov, V. P., Konstantinov, V. M.; In: Ivanov, V. P. (2003). Vosstanovlenie detalei mashin. Moscow: Mashinostroenie, 672.
  8. Das, C. R., Albert, S. K., Bhaduri, A. K., Sudha, C., Terrance, A. L. E. (2005, August). Characterisation of nickel based hardfacing deposits on austenitic stainless steel. Surface Engineering, Vol. 21, № 4, 290–296. doi:10.1179/174329405x40867
  9. Shabliy, O., Pulka, Ch. (2009). Investigation of microstrukture and properties of the welded metal, obtained under induction heating. Scientific journal of the Ternopil National technical university, Vol. 14, № 1, 46–55.
  10. Gusev, A. V., Ashirov, I. Z. (2006). Remont klapana DVS. Vestnik Orenburgskogo gosudarstvennogo universiteta, № 13, 81.
  11. Mikosyanchyk, O. (25.03.2014). Prystrii dlia otsinky trybotekhnichnykh kharakterystyk tryboelementiv. Patent of Ukraine № 88748, MPK G 01 N 3/56. Appl. № u 2013 13450. Filed 19.11.2013. Bull. № 6, 4.
  12. Harlamov, Yu. A., Budag'iants, N. A. (2003). Osnovy tehnologii vosstanovleniia i uprochneniia detalei mashin. Lugansk: East Ukrainian National University n. a. Vladimir Dal, 495.
  13. Mnatsakanov, R. G. (1997). Tribotehnicheskie svoistva smazochnyh materialov v nestatsionarnyh rezhimah raboty. Kyiv: KMUGA, 109.
  14. Mnatsakanov, R. G. (1986). Vliianie neustanovivshihsia rezhimov raboty na smazochnoe deistvie masel i smazok v usloviiah kacheniia so skol'zheniem. Kyiv: KIIGA, 156.
  15. Klamann, D. (1988). Lubricants and Related Products. Translation from English. Moscow: Khimiia, 488.
  16. Rebinder, P. A. (1979). Poverhnostnye iavleniia v dispersnyh sistemah. Fiziko-himicheskaia mehanika. Izbrannye trudy. Moscow: Nauka, 384.
  17. Official website of JSC «Polema». Available: http://www.polema.net
  18. Dimofte, F., Krantz, T. L.; In: Bouzakis, K.-D. (2008). Tests of bearings and gears with PVD coatings for aerospace transmissions; results and problems. Proceedings of the 3rd International Conference on Manufacturing Engineering (ICMEN), 1-3 October 2008. Chalkidiki, Greece: ΕΕΔΜ and PCCM, 33–44.

Published

2016-03-29

How to Cite

Микосянчик, О. А., Ляшенко, Б. А., Агеев, М. С., & Лопата, В. Н. (2016). Analysis of tribotechnical characteristics of self-fluxing coating under rolling and sliding at non-stationary loading. Technology Audit and Production Reserves, 2(1(28), 4–9. https://doi.org/10.15587/2312-8372.2016.63036