Determination of the rigidity parameters of spring shock absorbers

Authors

DOI:

https://doi.org/10.15587/2312-8372.2016.70181

Keywords:

calculation, shock absorber, rigidity, navigation systems, vibration, shocks, damping characteristics

Abstract

The article discusses the methods of reducing errors of spring shock absorbers thereby increasing their damping characteristics to improve systems, shock and vibration protection, used in navigation systems for mitigating the effects of negative factors on control device during the action of vibrations or shocks.

With the increasing precision and quality of navigational devices has increased the requirements for quality spring shock absorbers, therefore, at the design stage it is necessary to reduce the presence of negative factors of spring shock absorber.

The breaking forces into components and splitting the geometry of the absorber in part, presents the methodology of calculating of the segments of the spring shock absorber with integrals Mora.

The methodology will be useful to design engineers when creating systems of depreciation in the navigation device. The technique allows to reveal places with low damping characteristics and in the design phase to make adjustments to improve the characteristics of the elements are calculated.

Author Biographies

Володимир Павлович Квасніков, National Aviation University, ave. Komarova, 1, Kyiv, 03680

Doctor of Technical Sciences, Professor, Honored Metrologist of Ukraine, Head of Department

Department of computerized electrical systems and technologies 

Андрій Олегович Возняковський, National Aviation University, ave. Komarova, 1, Kyiv, 03680

Graduate student

Department of computerized electrical systems and technologies

References

  1. Il'inskii, V. S. (1982). Sashita REA i pretsisionnogo oborudovaniia ot dinamicheskih vosdeistvii. Moscow: Radio i svias', 295.
  2. Kvasnikov, V. P., Shcheluha, A. O. (2014). Sistema identifikatsii parametrov i vosstanovleniia funktsional'nyh savisimostei v slozhnyh tehnicheskih sistemah. Visnyk Inzhenernoi akademii Ukrainy, 4, 68–73.
  3. Bezvesilna, O. M., Kvasnikov, V. P., Tkachuk, A. H. (2014). Eksperymentalni doslidzhennia systemy udaro- i vibrozakhystu NS. Visnyk Inzhenernoi akademii Ukrainy, 1, 55–59.
  4. Bezvesilna, O. M., Tsiruk, V. H. (2014). Systema udaro- i vibrozakhystu systemy stabilizatsii navihatsiinoho kompleksu lehkoi bronovanoi tekhniky. Tekhnolohichni kompleksy, 2, 134–141.
  5. Bezvesilna, O. M., Kvasnikov, V. P., Tsiruk, V. H., Maliarov, S. P. (2014). Sklad i pryntsyp roboty systemy udaro- i vibrozakhystu NS. Visnyk Inzhenernoi akademii Ukrainy, 1, 77–80.
  6. Özgüven, H. N., Çandir, B. (1986, December). Suppressing the first and second resonances of beams by dynamic vibration absorbers. Journal of Sound and Vibration, Vol. 111, № 3, 377–390. doi:10.1016/s0022-460x(86)81399-2
  7. Pilkey, W. D., Purtsezov, S. V. (2005). Optimization of Parameters of Shock Isolator with Preview Control. Proceedings of International Conference on Physics and Control. Russia, Saint Petersburg, August 24-26, 2005, 330–334. doi:10.1109/phycon.2005.1514002
  8. Verkovich, G. A., Golovenkin, E. N., Golubkov, V. A.; In: Yavlenskii, K. N. et al. (1989). Spravochnik konstruktora tochnogo priborostroeniia. Leningrad: Mashchinostroenie, Leningradskoe otdelenie, 792.
  9. Wrigley, W., Hollister, W. M., Denhard, W. G. (1972). Teoriia, proektirovanie i ispytanie giroskopov. Moscow: Mir, 416.
  10. Panovko, Ya. G., Gubanova, I. I. (1967). Ustoichivost' i kolebaniia uprugih sistem. Moscow: Nauka, 352.
  11. Odintsov, A. A. (1985). Teoriia i raschiot giroskopicheskih priborov. Kyiv: Visha shchkola, 392.
  12. Pervitskii, Yu. D. (1976). Raschiot i konstruirovanie tochnyh mehanismov. Leningrad: Mashchinostroenie, Leningradskoe otdelenie, 456.

Published

2016-05-26

How to Cite

Квасніков, В. П., & Возняковський, А. О. (2016). Determination of the rigidity parameters of spring shock absorbers. Technology Audit and Production Reserves, 3(2(29), 8–12. https://doi.org/10.15587/2312-8372.2016.70181