The developing of the system of equations of real blades surfaces and the algorithm for predicting the gas turbine engines blisks normed precision factors

Authors

  • Игорь Александрович Тернюк Zhukovsky National Aerospace University «Kharkiv Aviation Institute», Chkalovа str., 17, Kharkiv, Ukraine, 61070, Ukraine https://orcid.org/0000-0001-7861-3112

DOI:

https://doi.org/10.15587/2312-8372.2016.72051

Keywords:

machining process, working errors, blades, blisk, gas turbine engine, algorithm

Abstract

The article is devoted to the developing of the system of equations of real blades surfaces and the algorithm for predicting the gas turbine engines BLISKs normed precision factors. The main aim is receiving the dependencies and the sequence of its utilizing, what is necessary to resolve the product precision predicting and control problems. The assumption, that blades surfaces normed errors are determined by groups of the accessible for control factors: geometrical, kinematic, thermal, force and deterioration was used in the capacity of base idea. These factors are reduced to twenty four reduced primary errors. This has made it possible to obtain the required differential and integral system of matrix equations which reflects the relation between real blade surface radius-vector and above mentioned errors. The radius-vector increment was used as argument in the dependencies for calculating the normed precision factors. Model adequacy was reinforced by the conducted experiments. The obtained system of equations of the real blades surfaces and algorithm for calculating the gas turbine engines BLISKS normed precision factors are applicable for resolving retrieval and project problems, which are connected with product precision increase reserves identification and optimal providing of the precision demands during BLISKS machining technological processes designing. It is the base for creating CAM-systems in the domain of aviation engines manufacturing.

Author Biography

Игорь Александрович Тернюк, Zhukovsky National Aerospace University «Kharkiv Aviation Institute», Chkalovа str., 17, Kharkiv, Ukraine, 61070

Postgraduate student

Department of Gas Turbine Engines Manufacturing

References

  1. Bazrov, B. M. (2005). Osnovy tehnologii mashinostroeniia. Moscow: Mashinostroenie, 736.
  2. Terniuk, N. E. (1983). Osnovy kompleksnoi optimizatsii tehnologicheskih sistem dlia proizvodstva zubchatyh koles. Kharkiv, 433.
  3. Boguslaev, A. V., Mozgovoi, S. V., Karas', G. V., Kachan, A. Ya. (2005). Formirovanie parametrov kachestva nesushchih poverhnostei monokoles GTD vysokoskorostnym frezerovaniem. Aviatsionno-kosmicheskaia tehnika i tehnologiia, 8 (24), 7–10.
  4. Zhemaniuk, P. D., Boguslaev, A. V., Mozgovoi, S. V., Karas', G. V., Kachan, A. Ya. (2004). Obrabotka protochnyh poverhnostei monokoles vysokoskorostnym frezerovaniem. Aviatsionno-kosmicheskaia tehnika i tehnologiia, 7 (15), 215–219.
  5. Kondratiuk, E. V., Puhal'skaia, G. V., Zharik, V. G., Panchenko, T. A., Kritchin, S. V. (2012). Povyshenie effektivnosti protsessa VSF tsentrobezhnyh koles za schet optimizatsii rezhimov rezaniia i ispol'zovaniia vysokoproizvoditel'nyh metodov obrabotki. Vestnik dvigatelestroeniia, 1, 103–114.
  6. Mozgovoi, V. F., Balushok, K. B., Kotov, I. I., Panasenko, V. A., Biruk, M. K. (2013). Strategii obrabotki lopatok monokoles na obrabatyvaiushchih tsentrah s ChPU s peremennoi 3-D korrektsiei. Tehnologicheskie sistemy, 1 (62), 22–28.
  7. Ameddah, H., Assas. M. (2011). NURBS interpolation strategies of complex surfaces in high speed machining. International Journal of CAD/CAM, 11 (1), 1–6.
  8. Heng, M., Erkorkmaz, K. (2010). Design of a NURBS interpolator with minimal feed fluctuation and continuous feed modulation capability. International Journal of Machine Tools and Manufacture, 50 (3), 281–293. doi:10.1016/j.ijmachtools.2009.11.005
  9. Vnukov, Yu. N., Germashev, A. I., Mozgovoi, V. F., Balushok, K. B., Kondratiuk, E. V. (2015). Oprobovanie usovershenstvovannoi tehnologi podgotovki i naneseniia dempfiruiushchei sredy na monokolesa GTD pri kontsevom frezerovanii. Vestnik dvigatelestroeniia, 1, 128–130.
  10. GOST 1 02571-86. Lopatki kompressorov i turbin. Predel'nye otkloneniia razmerov formy i raspolozheniia pera. (13.06.1986). Official edition, 36.
  11. Litvin, F. L. (1968). Teoriia zubchatyh zatseplenii. Moscow: Nauka, 54.
  12. Poletaev, V. A., Volkov, D. I., Kliment'ev, A. V., Plotnikova, G. A.; assignee: State educational institution of higher education «Rybinsk State Aviation Technological Academy named after P. A. Soloviev». (27.09.2011). Sposob obrabotki monokoles. Patent of Russian Federation № 2429949, MPK B23C3/18. Appl. № 2010121618/02. Filed 27.05.2010. Bull. № 6, 10.
  13. Radzvevich, S. P. (2001). Formoobrazovanie poverhnostei detalei. Osnovy teorii. Kyiv: Rastan, 592.
  14. Mihailov, A. N. (2009). Osnovy sinteza funktsional'no-orientirovannyh tehnologii mashinostroeniia. Donetsk: DonNTU, 346.

Published

2016-05-26

How to Cite

Тернюк, И. А. (2016). The developing of the system of equations of real blades surfaces and the algorithm for predicting the gas turbine engines blisks normed precision factors. Technology Audit and Production Reserves, 3(1(29), 8–16. https://doi.org/10.15587/2312-8372.2016.72051