Development of substitutional computational methods for maximum-likelihood detection of the object’s near-zero apparent motion on the series of CCD-frames

Authors

DOI:

https://doi.org/10.15587/2312-8372.2016.75793

Keywords:

series of CCD-frames, OLS-evaluation, object's position measurements, asteroids

Abstract

The objects with near-zero apparent motion during observation are the subject of study. The main disadvantage of such objects is the fact that the object’s movement on a series of CCD-frames can be compared with errors of the position determining of the object.

We propose using the substitutional decision rules to detect object’s near-zero apparent motion. These rules are based on the maximum-likelihood criterion and use a joint density of the measurements distribution as maximum-likelihood function.

Substitutional computation methods for maximum-likelihood detection of the object’s near-zero apparent motion on the series of CCD-frames are developed. They are based on using of maximum-likelihood criterion in the decision rules of detection. Likelihood ratio is used as criterion for a sufficient statistic with minimum amount. This ratio is compared with the critical values selected in accordance with a predetermined criterion.

Using of the substitutional decision rules is justified by the absence of a priori information about likelihood function parameters such as parameters of the apparent motion of objects and dispersion of the positional measurements of series.

The article describes the cases with known, unknown variance of object's position measurements on the CCD-frames and using its external evaluation. Parameters of observed object's apparent motion should be previously estimated for using the synthesized decision rules. Also the corresponding interpolated coordinates on the investigated frames should be determined.

Author Biographies

Сергей Васильевич Хламов, Kharkiv National University of Radio Electronics, 14 Nauki ave., Kharkiv, Ukraine, 61166

Postgraduate Student

Department of Electronic Computer

Вадим Евгеньевич Саваневич, Uzhhorod National University, 3 Narodna sq., Uzhhorod, Ukraine, 88000

Doctor of Technical Sciences, Professor

Department of Informative and Operating Systems and Technologies

Александр Борисович Брюховецкий, Kharkiv General Customer Representative of the State Space Agency of Ukraine, 1 Academica Proskury str., Kharkiv, Ukraine, 61070

Candidate of Technical Sciences, Engineer

Сергей Сергеевич Орышич, Uzhhorod National University, 3 Narodna sq., Uzhhorod, Ukraine, 88000

Department of Software Systems

References

  1. Dearborn, D. P. S., Miller, P. L. (2014). Defending Against AsteroidsAsteroids and CometsComets. Handbook of Cosmic Hazards and Planetary Defense. Springer Science + Business Media, 1–18. doi:10.1007/978-3-319-02847-7_59-1
  2. Kortencamp, S. (2011). Asteroids, Comets, and Meteoroids. Mankato, MN: Capstone Press, 32. ISBN: 9781429664943.
  3. Smith, G. E. (2010, August 13). Nobel Lecture: The invention and early history of the CCD. Reviews of Modern Physics, Vol. 82, № 3, 2307–2312. doi:10.1103/revmodphys.82.2307
  4. Savanevich, V. E., Bryukhovetskiy, A. B., Kozhukhov, A. M., Dikov, E. N. (2011). The method of asteroid detection, based on after-treshold accumulation of signal statistic in space of asteroid trajectory parameters. Systemy obrobky informatsii, 2 (92), 137–144.
  5. Kuzmyn, S. Z. (2000). Tsifrovaia radiolokatsiia. Vvedenie v teoriiu. Kyiv: KviTs, 428.
  6. Kirubarajan, T., Bar-Shalom, Y. (2003, October). Kalman filter versus IMM estimator: when do we need the latter? IEEE Transactions on Aerospace and Electronic Systems, Vol. 39, № 4, 1452–1457. doi:10.1109/taes.2003.1261143
  7. Masson, M. E. J. (2011, February 8). A tutorial on a practical Bayesian alternative to null-hypothesis significance testing. Behavior Research Methods, Vol. 43, № 3, 679–690. doi:10.3758/s13428-010-0049-5
  8. Lee, M. D., Wagenmakers, E.-J. (2014). Bayesian Cognitive Modeling: A Practical Course. Cambridge University Press, 284. doi:10.1017/cbo9781139087759
  9. Myung, I. J. (2003, February). Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology, Vol. 47, № 1, 90–100. doi:10.1016/s0022-2496(02)00028-7
  10. Lehman, E. L., Romano, J. P. (2010). Testing Statistical Hypotheses. New York: Springer, 784. doi:10.1007/0-387-27605-x
  11. Morey, R. D., Wagenmakers, E.-J. (2014, September). Simple relation between Bayesian order-restricted and point-null hypothesis tests. Statistics & Probability Letters, Vol. 92, 121–124. doi:10.1016/j.spl.2014.05.010
  12. Trifonov, A. P., Shchinakov, Yu. S. (1986). Sovmestnoe raslichenie signalov i otsenka ih parametrov na fone pomeh. Moscow: Radio i svias, 264.
  13. Minu, M.; Translated from French: Shchtern, A. I. (1990). Matematicheskoe programmirovanie. Teoriia i algoritmy. Moscow: Nauka. Gl. red. fis.-mat it., 488.
  14. Arora, J. S., Huang, M. W., Hsieh, C. C. (1994, October). Methods for optimization of nonlinear problems with discrete variables: A review. Structural Optimization, Vol. 8, № 2-3, 69–85. doi:10.1007/bf01743302
  15. Ermakov, S. M., Zhigliavskii, A. A. (1987). Matematicheskaia teoriia optimal'nogo eksperimenta. Moscow: Nauka, 320.
  16. Mudrov, V. I., Kushchko, V. L. (1976). Metody obrabotki ismerenii. Moscow: Sovetskoe radio, 252.
  17. Kuzmin, S. S. (1986). Osnovy proektirovaniia sistem tsifrovoi obrabotki radiolokatsionnoi informatsii. Moscow: Radio i svias, 352.
  18. Girard, T. M., Platais, I., Kozhurina-Platais, V., van Altena, W. F., Lopez, C. E. (1998, February). The Southern Proper Motion Program. I. Magnitude Equation Correction. The Astronomical Journal, Vol. 115, № 2, 855–867.doi:10.1086/300210
  19. Savanevich, V. E., Bryukhovetskiy, A. B., Kozhukhov, A. M., Dikov, E. N., Vlasenko, V. P. (2012, January 30). The program CoLiTec for automated detection of faint celestial bodies. Kosmicna Nauka i Tehnologia [Space Science and Technology], Vol. 18, № 1(74), 39–46. doi:10.15407/knit2012.01.039
  20. Savanevych, V. E., Briukhovetskyi, O. B., Sokovikova, N. S., Bezkrovny, M. M., Vavilova, I. B., Ivashchenko, Y. M., Elenin, L. V., Khlamov, S. V., Movsesian, Ia. S., Dashkova, A. M., Pogorelov, A. V. (2015, June 24). A new method based on the subpixel Gaussian model for accurate estimation of asteroid coordinates. Monthly Notices of the Royal Astronomical Society, Vol. 451, № 3, 3287–3298. doi:10.1093/mnras/stv1124
  21. Savanevych, V. E., Briukhovetskyi, A. B., Ivashchenko, Y. N., Vavilova, I. B., Bezkrovniy, M. M., Dikov, E. N., Vlasenko, V. P., Sokovikova, N. S., Movsesian, Ia. S., Dikhtyar, N. Yu., Elenin, L. V., Pohorelov, A. V., Khlamov, S. V. (2015, November). Comparative analysis of the positional accuracy of CCD measurements of small bodies in the solar system software CoLiTec and Astrometrica. Kinematics and Physics of Celestial Bodies, Vol. 31, № 6, 302–313. doi:10.3103/s0884591315060045
  22. Khlamov, S., Savanevych, V., Briukhovetskyi, O., Oryshych, S. (2016). Development of computational method for detection of the object’s near-zero apparent motion on the series of CCD-frames. Eastern-European Journal Of Enterprise Technologies, 2(9(80)), 41–48. doi:10.15587/1729-4061.2016.65999

Published

2016-07-26

How to Cite

Хламов, С. В., Саваневич, В. Е., Брюховецкий, А. Б., & Орышич, С. С. (2016). Development of substitutional computational methods for maximum-likelihood detection of the object’s near-zero apparent motion on the series of CCD-frames. Technology Audit and Production Reserves, 4(3(30), 19–26. https://doi.org/10.15587/2312-8372.2016.75793