Development of method of express internal combustion engine diagnosis based on wavelet analysis

Authors

  • Константин Сергеевич Тыманюк Odessa National Polytechnic University, ave. Shevchenko 1, Odessa, Ukraine, 65044, Ukraine https://orcid.org/0000-0003-0679-3737
  • Виталий Леонидович Костенко Odessa National Polytechnic University, ave. Shevchenko 1, Odessa, Ukraine, 65044, Ukraine https://orcid.org/0000-0002-8922-4232
  • Анатолий Александрович Николенко Odessa National Polytechnic University, ave. Shevchenko 1, Odessa, Ukraine, 65044, Ukraine https://orcid.org/0000-0002-9849-1797
  • Анатолий Михайлович Теплечук Odessa National Polytechnic University, ave. Shevchenko 1, Odessa, Ukraine, 65044, Ukraine https://orcid.org/0000-0002-4455-8909
  • Денис Олегович Адаменко Odessa National Polytechnic University, ave. Shevchenko 1, Odessa, Ukraine, 65044, Ukraine

DOI:

https://doi.org/10.15587/2312-8372.2016.75842

Keywords:

rapid diagnosis, vibration signals, wavelet analysis, automated system, MATLAB environment, internal combustion engine

Abstract

The method of rapid internal combustion engine diagnosis based on wavelet analysis of vibration signals during maintenance using automated parallel data collection systems is proposed. Software for processing and analyzing the diagnostic data is developed In the MATLAB environment. The experimental validation of the developed method is conducted. Analysis of experimental data allowed determining the defective engines using the vibration signal.

Diagnostic signals containing a frequency map of nondefective internal combustion engine VAZ are obtained during experiment, which allowed determining the deviation from the norm in diagnosed engines.

Disadvantages at this stage of the research include the need for storage of diagnostic information for each type of fault. Such information later will reduce the time of rapid diagnostic procedures and extend its capabilities. There is also a disadvantage is the need to expand the range of diagnosed internal combustion engine types.

Comparative analysis of the examples of initial diagnostic signals and their wavelet decompositions showed the possibility of further use of the data for rapid internal combustion engine diagnosis.

The possibility of method will be substantially expanded with the accumulation of diagnostic features and improving the software, because the processes in internal combustion engines generate the necessary information about its technical condition as vibratory activity.

The research results can be useful for assessing the technical condition of the engines.

Author Biographies

Константин Сергеевич Тыманюк, Odessa National Polytechnic University, ave. Shevchenko 1, Odessa, Ukraine, 65044

Postgraduate

Department of Metal-cutting machines Metrology and Certification

Виталий Леонидович Костенко, Odessa National Polytechnic University, ave. Shevchenko 1, Odessa, Ukraine, 65044

Doctor of Technical Sciences, Professor

Department of Metal-cutting machines Metrology and Certification

Анатолий Александрович Николенко, Odessa National Polytechnic University, ave. Shevchenko 1, Odessa, Ukraine, 65044

Candidate of Technical Sciences, Associate Professor

Department of Information Systems

Анатолий Михайлович Теплечук, Odessa National Polytechnic University, ave. Shevchenko 1, Odessa, Ukraine, 65044

Postgraduate

Department of Automobile Transport

Денис Олегович Адаменко, Odessa National Polytechnic University, ave. Shevchenko 1, Odessa, Ukraine, 65044

Department of Information Systems

References

  1. Tymaniuk, K., Kostenko, V. (2016). Development of automated system of iterative control of vehicle engine technical condition. Technology Audit And Production Reserves, 1(2(27)), 77–82. doi:10.15587/2312-8372.2016.59871
  2. Zbigniew, S., Warczek, J. (2011). Application of vibration signals in the diagnosis of combustion engines – exploitation practices. Journal of KONES. Powertrain and Transport, Vol. 18, № 3, 405–412.
  3. Gasselberg, V. S., Saporozhets, A. V. (2007). Diagnostika dvigatelei vnutrennego sgoraniia avtomobilei po vibroakusticheskim parametram. Vestnik AGTU, 2, 72–74.
  4. Komorska, I. (2008). The diagnostic model proposition of the engine vibration signal. Journal of KONES. Powertrain and Transport, Vol. 15, № 2, 191–198.
  5. Rublov, V. I., Voitiuk, V. D. (2010). Metodolohiia otsinky yakosti silskohospodarskoi tekhniky pry tekhnichnomu servisi. Naukovyi visnyk Natsionalnoho universytetu bioresursiv i pryrodokorystuvannia Ukrainy, 144 (1), 259–268.
  6. Oksen, E. I., Oksen, D. E. (2011). Ispol'sovanie vibroakusticheskih signalov dlia otsenki sostoianiia dvigatelia vnutrennego sgoraniia. Aviatsionno-kosmicheskaia tehnika i tehnologiia, 9, 142–147.
  7. Tomaszewski, F., Szymański, G. (2012, January 1). Frequency Analysis of Vibrations of the Internal Combustion Engine Components in the Diagnosis of Engine Processes. Archives of Transport, Vol. 24, № 1, 117–125. doi:10.2478/v10174-012-0008-2
  8. Czech, P., Lazarz, B., Madej, H., Wojnar, G. (2010). Vibration diagnosis of car motor engines. Acta Technica Corviniensis – Bulletin of Engineering, Vol. 1, № 3, 37–42.
  9. Du, X., Li, Z., Bi, F., Zhang, J., Wang, X., Shao, K. (2012, April 28). Source separation of diesel engine vibration based on the empirical mode decomposition and independent component analysis. Chinese Journal of Mechanical Engineering, Vol. 25, № 3, 557–563. doi:10.3901/cjme.2012.03.557
  10. Radoi, A., Lazarescu, V., Florescu, A. (2009). Wavelet analysis to detect the knock on internal combustion engines. Roum. Sci. Techn. – Electrotechn. et Energ, Vol. 54, № 3, 301–310.
  11. Banlaki, P., Magosi, Z. (2010). Part failure diagnosis for internal combustion engine using noise and vibration analysis. Periodica Polytechnica Transportation Engineering, Vol. 38, № 1, 53–60. doi:10.3311/pp.tr.2010-1.09
  12. Tymaniuk, K., Kostenko, V., Popereka, E. (2015). Method of express diagnostics of vehicles on vibration parameters, system voltage and ignition systems. Bulletin of the National Technical University «Kharkiv Polytechnic Institute»: Mechanical-technological systems and complexes, 52 (1161), 44–51.

Published

2016-07-26

How to Cite

Тыманюк, К. С., Костенко, В. Л., Николенко, А. А., Теплечук, А. М., & Адаменко, Д. О. (2016). Development of method of express internal combustion engine diagnosis based on wavelet analysis. Technology Audit and Production Reserves, 4(3(30), 47–52. https://doi.org/10.15587/2312-8372.2016.75842