Application of neural networks in the statistical system of analysis and monitoring of telecommunication networks

Authors

DOI:

https://doi.org/10.15587/2312-8372.2016.79991

Keywords:

information and telecommunication network, intelligent technology, neuron, neural network, traffic

Abstract

In this paper, based on the analysis of practical use of telecommunication systems, the necessity of a broad and scientifically proven implementation of statistical methods of their analysis and monitoring on the basis of open flow information is determined.

A promising approach to processing of implicit knowledge forms is developed on the basis of the technology of neural structures. The architecture of neural networks allows to implement them using the technology of a high degree of integration. An effectiveness of using neural networks and their analog models is proved to solve the approximation problems of continuous functions of several variables and forecast of the processes that take place in telecommunication networks over the time.

The procedures for initial processing parameters of telecommunication network for use as input data to the neural network are proposed. The developed procedures allow a closer consider and analyze the dynamics of information flows circulating in networks and identify the characteristics of random sequences and implementation of neural networks allows to predict the network behavior depending on seasonality and trend.

Author Biographies

Юрій Іванович Хлапонін, National Aviation University, 1, Avenue Kosmonavta Komarova, Kyiv, Ukraine, 03680

Candidate of Technical Sciences, Senior Research Fellow, Associate Professor

Department information security

 

Генадій Борисович Жиров, Military Institute of Taras Shevchenko National University of Kyiv, Str. Lomonosov, 81, Kyiv, Ukraine, 03680

Candidate of Technical Sciences, Senior Research Fellow, Leading Researcher Research Center

Олександр Миколайович Нікітчин, Taras Shevchenko National University of Kyiv, Glushkova ave. 4g, Kyiv, Ukraine, 03680

Candidate of History Sciences

Department radioengineering and radioelectronic systems

References

  1. Lukatskii, A. V. (2003). Obnaruzhenie atak. St. Petersburg: BHV – Peterburg, 624. ІSBN 5-94157-246-8.
  2. Uskov, A. A., Kuzmin, A. V. (2004). Intellektual'nye tehnologii upravleniia. Iskusstvennye neironnye seti i nechetkaia logika. Moscow: Goriachaia liniia – Telekom, 124.
  3. Eniukov, I. S., Retinskaia, I. V.; In: Tihonov, A. N. (2004). Statisticheskii analiz i monitoring nauchno-obrazovatel'nyh internet-setei. Moscow: Finansy i statistika, 320.
  4. Artemenko, M. Yu., Berkman, L. N., Toliupa, S. V. (2007). Neironni merezhi ta yikh zastosuvannia v telekomunikatsiinykh systemakh. Radiotekhnika, 134, 45–53.
  5. Clerckx, B. (2013, May). Interference management in wireless networks: Practice and Theory. Eurecom, 50.
  6. Kulchin, Y. N., Zakasovskaya, E. V. (2010, September). Optimizing algebraic and neural methods for information processing in distributed fiber-optical measuring systems. Optical Memory and Neural Networks, Vol. 19, № 3, 237–247. doi:10.3103/s1060992x10030057
  7. Ohwatari, Y., Miki, N., Abe, T., Nagata, S., Okumura, Y. (2011, March). Investigation on improvement in channel estimation accuracy using data signal muting in downlink coordinated multiple-point transmission and reception in LTE-Advanced. Proceedings of the IEEE Wireless Communications and Networking Conference, Quintana-Roo, Mexico, 28-31 March, 2011. Institute of Electrical and Electronics Engineers (IEEE), 1288–1293. doi:10.1109/wcnc.2011.5779315
  8. Schaaf, M., Wilke, G., Mikkola, T., Bunn, E., Hela, I., Wache, H., Grivas, S. G. (2015). Towards a Timely Root Cause Analysis for Complex Situations in Large Scale Telecommunications Networks. Procedia Computer Science, Vol. 60, 160–169. doi:10.1016/j.procs.2015.08.115
  9. Simeone, O., Somekh, O., Poor, H. V., Shamai (Shitz), S. (2009). Downlink Multicell Processing with Limited-Backhaul Capacity. EURASIP Journal on Advances in Signal Processing, Vol. 2009, 1–11. doi:10.1155/2009/840814
  10. Zakasovskaya, E. V., Fadeev, V. V. (2007). Restoration of Point Influences by the Fiber-Optical Network in View of a priori Information. SPIE Proc. APCOM, Vol. 6675.
  11. Haykin, S. (2006). Neural Networks: A Comprehensive Foundation. Ed. 2. Translated from English. Moscow: Williams, 1104.
  12. Bekh, I. I., Novak, S. O., Khlaponin, Yu. I. (2016). Pobudova aproksymatsiinoi funktsii na osnovi alhorytmu zvorotnoho rozpovsiudzhennia pomylky yak metodu navchannia shtuchnykh neironnykh merezh. Visnyk inzhenernoi akademii, 1, 198–201.
  13. Zakhour, R., Gesbert, D. (2011, December). Optimized Data Sharing in Multicell MIMO With Finite Backhaul Capacity. IEEE Transactions on Signal Processing, Vol. 59, № 12, 6102–6111. doi:10.1109/tsp.2011.2165949

Published

2016-09-29

How to Cite

Хлапонін, Ю. І., Жиров, Г. Б., & Нікітчин, О. М. (2016). Application of neural networks in the statistical system of analysis and monitoring of telecommunication networks. Technology Audit and Production Reserves, 5(2(31), 35–41. https://doi.org/10.15587/2312-8372.2016.79991