Analysis of the potential features in multicomponent ceramic composites based on the refractory anoxic compounds (part 2)

Authors

  • Владислав Владиславович Цигода National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Prosp. Peremohy, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0001-6997-6384
  • Катерина Всеволодівна Кириленко National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Prosp. Peremohy, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0003-0353-8685
  • Віталій Ярославович Петровський National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Prosp. Peremohy, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-1544-4320

DOI:

https://doi.org/10.15587/2312-8372.2016.84991

Keywords:

percolation theory, Skal’s theory, Seebeck effect, hafnium carbide, Seebeck coefficient, metallic inclusions

Abstract

The physical nature of thermoelectric phenomena in ceramic composites based on refractory anoxic compounds is examined in the article as the object of research. In the current operating conditions, the disadvantages of this object are a big response time, which presented in that the produced functional devices do not sensitive to the sudden peak changes in the temperature.

The study of thermoelectric properties was conducted by heating the entire sample. It was placed in the oven, increase the speed of heating which is supported within 4 deg/min with an accuracy of ± 0,2 %. The temperature of the oven was parallel controlled by platinum-platinum-rhodium thermocouple.

For the first time proved that for maximum Seebeck coefficient, metallic inclusions should have an elongated cylindrical shape and volume. Percolation threshold should be about 2, and fractal dimension of the cluster should be about 2,4. Obtained values contradict the Skal’s theory and need further research. It is proved that using the effect of accumulating and storing charge during their release, it can increase conductivity without reducing thermoelectric ability of the couple, which in turn will increase the thermoelectric Q-factor.

These research results can be used for the manufacture of highly efficient thermoelectric converters.

Author Biographies

Владислав Владиславович Цигода, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Prosp. Peremohy, Kyiv, Ukraine, 03056

PhD student

Department of Microelectronics

Катерина Всеволодівна Кириленко, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Prosp. Peremohy, Kyiv, Ukraine, 03056

Assistant, Researcher

Department of Renewable Energy

Віталій Ярославович Петровський, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Prosp. Peremohy, Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor

Department of Microelectronics

References

  1. Tsygoda, V., Kyrylenko, K., Petrovskyi, V. (2016). Analysis of the potential occurrence features in multicomponent ceramic composites based on the refractory anoxic compounds (part 1). Technology Audit And Production Reserves, 5(1(31)), 51–62. doi:10.15587/2312-8372.2016.79874
  2. Tsygoda, V., Krystych, Yu., Petrovsky, V. (2015). Zastosuvannia termoelektrychnykh peretvoriuvachiv na osnovi tuhoplavkykh bezkysnevykh spoluk dlia vymiriuvannia temperatury ahresyvnykh seredovyshch. Keramika: nauka i zhizn', 1 (26), 4–20.
  3. Shalimova, K. V. (1985). Fizika poluprovodnikov. Ed. 3. Moscow: Energoatomizdat, 247.
  4. Bilenko, I. I. (1979). Fizychnyi slovnyk. Kyiv: Vyshcha shkola, 336.
  5. Samsonov, G. V., Kislyi, P. S. (1965). Vysokotemperaturnye nemetallicheskie termopary i nakonechniki. Kyiv: Naukova dumka, 180.
  6. Samsonov, G. V. (1963). Tugoplavkie soedineniia. Moscow: Metallurgizdat, 400.
  7. Samsonov, G. V., Vinitsky, I. M. (1976). Tugoplavkie soedineniia. Ed. 2. Moscow: Metallurgiia, 560.
  8. Labenskii, A. V., Kirilenko, E. V., Kurka, V. A., Petrovskii, V. Ya. (2011). Vliianie tehnologicheskih faktorov na termo-e.d.s. binarnyh sistem na osnove SiC i kompozitov Si3N4-B4C. Keramika: nauka i zhizn', 2 (12), 63–74.
  9. Smirnov, I. A., Smirnov, B. I., Mokhov, E. N., Sulkowski, C., Misiorek, H., Jezowski, A., de Arellano-Lopez, A. R., Martinez-Fernandez, J. (2008, August). Thermopower of biomorphic silicon carbide. Physics of the Solid State, Vol. 50, № 8, 1407–1411. doi:10.1134/s1063783408080039
  10. Gudaev, O. A., Malinovskii, V. K. (2002, December). Temperature dependence of thermopower in polar noncrystalline materials. Physics of the Solid State, Vol. 44, № 12, 2219–2223. doi:10.1134/1.1529914
  11. Parfenov, O. E., Shklyaruk, F. A. (2007, September). On the temperature dependence of the thermoelectric power in disordered semiconductors. Semiconductors, Vol. 41, № 9, 1021–1026. doi:10.1134/s1063782607090035
  12. McLachlan, D. S., Blaszkiewicz, M., Newnham, R. E. (1990, August). Electrical Resistivity of Composites. Journal of the American Ceramic Society. Wiley-Blackwell, Vol. 73, № 8, 2187–2203. doi:10.1111/j.1151-2916.1990.tb07576.x
  13. Skorohod, V., Boitsov, O., Petrovsky, V.; In: Ranacjwski, J., Raabe, J., Petrovski, W. (1998). Matrichnost' struktury i razmernost' provodiashchego klastera v kompozite tipa izoliator-povodnik. Nowe kierunki technologii I badan materialowych. Warszava: ATOS, 540.
  14. Chen, I.-G., Johnson, W. B. (1992). Non-ohmic I–V behaviour of random metal-insulator composites near their percolation threshold. Journal of Materials Science, Vol. 27, № 20, 5497–5503. doi:10.1007/bf00541611
  15. Shimoni, N., Azulay, D., Balberg, I., Millo, O. (2002, March). Voltage Induced Electrical Connectivity on a Percolation Cluster. Physica Status Solidi (b), Vol. 230, № 1, 143–150. doi:10.1002/1521-3951(200203)230:1<143::aid-pssb143>3.0.co;2-7
  16. Toker, D., Azulay, D., Shimoni, N., Balberg, I., Millo, O. (2003, July 25). Tunneling and percolation in metal-insulator composite materials. Physical Review B, Vol. 68, № 4, 1–4. doi:10.1103/physrevb.68.041403
  17. Petrovsky, V. Y., Rak, Z. S. (2001, February). Densification, microstructure and properties of electroconductive Si3N4–TaN composites. Part II: Electrical and mechanical properties. Journal of the European Ceramic Society, Vol. 21, № 2, 237–244. doi:10.1016/s0955-2219(00)00199-0
  18. Petrovsky, V. Y., Rak, Z. S. (2001, February). Densification, microstructure and properties of electroconductive Si3N4–TaN composites. Part I: Densification and microstructure. Journal of the European Ceramic Society, Vol. 21, № 2, 219–235. doi:10.1016/s0955-2219(00)00198-9
  19. Skal, A. S. (1985). Kriticheskoe povedenie termo-e.d.s. binarnyh kompozitnyh materialov. Journal of Experimental and Theoretical Physics, Vol. 88, № 2, 516–521.
  20. Skal, A. S. (1982). Vychislenie termo-e.d.s. v modeliah teorii protekaniia. Journal of Experimental and Theoretical Physics, № 2, 405–406.
  21. Tsygoda, V., Petrovsky, V. (2013). Formovanie keramicheskih lent aktivnyh sloev i obolochki sloistyh termopar metodom prokatki. Keramika: nauka i zhizn', 2 (20), 12–20.
  22. Petrovsky, V. Ya. (1999). Physique-technical basses and technological principles for manufacturing of functional gradient ceramic materials on the base of oxygen free refractory compounds. Kyiv: Institute for Problems of Materials Science NAS of Ukraine, 27.
  23. Samsonov, G. V. et al. (1972). Elektronnyi spektr i fizicheskie svoistva diboridov titana, vanadiia i hroma. Izvestiia vuzov SSSR. Fizika, 6, 37–42.
  24. Popov, V. V., Gordeev, S. K., Grechinskaya, A. V., Danishevskii, A. M. (2002, April). Electrical and thermoelectric properties of nanoporous carbon. Physics of the Solid State, Vol. 44, № 4, 789–792. doi:10.1134/1.1470577
  25. Babichev, A. N., Babushkina, N. A., Bratkovsky, A. M. et al.; In: Grigoriev, I. S., Meilihov, E. Z. (1991). Fizicheskie velichiny. Moscow: Energoatomizdat, 1232.
  26. Parfen’eva, L. S., Smirnov, B. I., Smirnov, I. A., Wlosewicz, D., Misiorek, H., Sulkowski, C., Jezowski, A., de Arellano-Lopez, A. R., Martinez-Fernandez, J. (2009, November). Heat capacity and thermopower coefficient of the carbon preform of sapele wood. Physics of the Solid State, Vol. 51, № 11, 2252–2256. doi:10.1134/s1063783409110092
  27. Petrovsky, V. Ya., Skorohod, V. V. (1999). Fizicheskie printsipy i tehnologicheskie aspekty polucheniia gradientnyh kompozitov na osnove beskislorodnoi keramiki. Poroshkovaia metallurgiia, 3/4, 3–16.

Published

2016-11-24

How to Cite

Цигода, В. В., Кириленко, К. В., & Петровський, В. Я. (2016). Analysis of the potential features in multicomponent ceramic composites based on the refractory anoxic compounds (part 2). Technology Audit and Production Reserves, 6(1(32), 9–16. https://doi.org/10.15587/2312-8372.2016.84991