Synthesis of graphitization control system of carbon products

Authors

  • Олексій Анатолійович Жученко National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremogy ave., 37, Kyiv, 03056, Ukraine https://orcid.org/0000-0001-5611-6529
  • Леонід Леонідович Бевзюк National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremogy ave., 37, Kyiv, 03056, Ukraine

DOI:

https://doi.org/10.15587/2312-8372.2016.85407

Keywords:

carbon products, graphitization, control system, fuzzy controller

Abstract

Current global trends in ferrous and nonferrous metallurgy, machine building, chemical and other industries cause a permanent increase of production of carbon graphite products. Production of graphite products is complex, multistage and very energy-intensive. The analysis of existing graphitization control systems of carbon products has shown that these systems are the systems of program control that do not take into account the current state of the control object, which affects their performance.

A new control system provides graphitization furnace control in two modes of operation – heating and graphitization. The framework of control system in heating mode is based on the use of fuzzy controller, which inputs are calculated using a simplified model of graphitization. The control algorithm in graphitization mode for the purpose of determining in advance the time of power outage of the furnace uses prediction of graphitization degree of carbon products.

Author Biographies

Олексій Анатолійович Жученко, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremogy ave., 37, Kyiv, 03056

Candidate of Technical Sciences, Associate Professor

Department of Chemical Automation Manufactures 

Леонід Леонідович Бевзюк, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremogy ave., 37, Kyiv, 03056

Department of Chemical Automation Manufactures 

References

  1. Znamerovskii, V. Yu., Iashkina, V. V. (1985). Issledovanie rezhimov vvoda energii v pechi grafitatsii. Promyshlennaia energetika, 11, 40–42.
  2. Yarymbash, D. S. (2014). Analiz elektromagnitnyh i termoelektricheskih protsessov v pechah Achesona. Energozberezhennia. Energetika. Energoaudit, 6, 11–21.
  3. Kuznetsov, D. M., Fokin, V. P. (2001). Protsess grafitatsii uglerodnyh materialov. Sovremennye metody issledovaniia. Novocherkassk: YuRGTU, 132.
  4. Kuznetsov, D. M. (2003). Grafitatsiia krupnogabaritnyh elektrodov. Protsess Achesona. Rostov n/D: RGASHM GOU, 168.
  5. Sosedov, V. P., Chalyh, E. F. (1987). Grafitatsiia uglerodistyh materialov. Moscow: Metallurgiia, 176.
  6. Chichulin, N. I., Davydovich, B. I. (1973). O rezhimah grafitatsii elektrodnyh izdelii. Sovershenstvovanie tehnologii i uluchshenie kachestva elektrodnoi produktsii, 5, 114–121.
  7. Samohin, I. N., Rozenman, I. M., Sass-Tisovskii, V. B. (1968). Opyt ekspluatatsii pechei s prinuditel'nym ohlazhdeniem sten i podiny pri povyshennoi plotnosti toka v kerne dlia proizvodstva konstruktsionnogo grafita. Voprosy grafitatsii uglerodistyh materialov, 1, 70–78.
  8. Sosedov, V. P., Sass-Tisovskii, V. B., Karmanov, A. S. (1967). O ratsional'nom grafike podiema moshchnosti i temperatury v protsesse grafitatsii. Tsvetnye metally, 2, 62–63.
  9. Znamerovskii, V. Yu., Yashkina, V. V. (1985). Issledovanie rezhimov vvoda energii v pechi grafitatsii. Promyshlennaia energetika, 11, 40–42.
  10. Glushko, I. N. (30.04.1984). Sposob kontrolia teplovogo rezhima protsessa grafitatsii. Author's certificate1089048 USSR, MKI3 C01B 31/04, G05D 27/00. Appl. № 3433981/23–26. Filed 01.03.1982. Bull. № 16, 2.
  11. Korzhyk, M. V. (2010). Matematychne modeliuvannia ta avtomatyzovane keruvannia protsesom hrafitatsii v pechakh Achesona. Kyiv, 230.
  12. In: Scheel, H. J., Fukuda, T. (2003). Crystal Growth Technology. John Wiley & Sons, Ltd., 668. doi:10.1002/0470871687
  13. Shulepov, S. V. (1972). Fizika uglegrafitovyh materialov. Moscow: Metallurgiia, 256.
  14. Sannikov, A. K., Somov, A. B., Kliuchnikov, V. V. et al. (1985). Proizvodstvo elektrodnoi produktsii. Moscow: Metallurgiia, 129.
  15. Ahmetshin, N. F., Dorzhiev, M. N., Shaburov, E. N. (1971). Vliianie svoistv mezhduelektrodnoi peresypki na elektricheskie, teplovye pokazateli i kachestvo elektrodov. Voprosy tehnicheskogo progressa v elektrodnoi promyshlennosti, 3, 205–213.
  16. Passino, K., Yurkovich, S. (2010). Fuzzy Control. The Control Systems Handbook, Second Edition. Informa UK Limited, 55-1–55-27. doi:10.1201/b10384-64
  17. In: Egupov, N. D. (2002). Metody robastnogo, neiro-nechiotkogo i adaptivnogo upravleniia. Ed. 2. Moscow: MGTU im. N. E. Baumana, 744.
  18. Korzhyk, M. V., Kutuzov, S. V. (2007). Model temperaturnoho polia pechi hrafitatsii. Naukovi visti NTUU «KPI», 1, 17–23.
  19. Panov, E. N., Korzhik, M. V., Karvatskii, A. Ya. (2007). Intensifikatsiia protsessa grafitatsii elektrodnyh izdelii v pechah Achesona postoiannogo toka. XIII mezhdunarodnaia konferentsiia «Aliuminii Sibiri – 2007», 11-13 sentiabria 2007. Krasnoiarsk: Verso, 331–337.
  20. Zhuchenko, O., Khibeba, M. (2016). Development of simplified mathematical model of carbon products formation. Technology Audit And Production Reserves, 5(3(31)), 16–22. doi:10.15587/2312-8372.2016.81218
  21. Gilat, A. (2014). MATLAB: An Introduction with Applications. Ed. 5. John Wiley & Sons, Ltd., 416.

Published

2016-11-24

How to Cite

Жученко, О. А., & Бевзюк, Л. Л. (2016). Synthesis of graphitization control system of carbon products. Technology Audit and Production Reserves, 6(2(32), 18–24. https://doi.org/10.15587/2312-8372.2016.85407