Calculation and analysis of static errors of two-gyro sensor

Authors

  • Олена Миколаївна Безвесільна National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Pobedy Prospect, 37, Kyiv, Ukraine, 03057, Ukraine https://orcid.org/0000-0002-6951-1242
  • Андрій Геннадійович Ткачук Zhytomyr State Technological University, Chernyakhovskogo str., 103, Zhуtomуr, Ukraine, 10005, Ukraine https://orcid.org/0000-0003-2466-6299
  • Анна Анатоліївна Гуменюк Zhytomyr State Technological University, Chernyakhovskogo str., 103, Zhуtomуr, Ukraine, 10005, Ukraine https://orcid.org/0000-0002-5744-4599
  • Сергій Олексійович Нечай National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Pobedy Prospect, 37, Kyiv, Ukraine, 03057, Ukraine https://orcid.org/0000-0002-7821-6472

DOI:

https://doi.org/10.15587/2312-8372.2016.85452

Keywords:

gyroscope, gravimeter, aviation gravimetric system, stabilizer, sensor

Abstract

New two-gyro sensor is considered. It can be used both in automated aviation gravimetric systems, and as the basic measuring device of weapons stabilizer. The object of research is new two-gyro unit (TGU) on the basis of gyro integrator of linear acceleration (GILA). New TGU consists of free gyroscope located in the inner and outer frames with interframe correction systems containing angle sensor on the axis of inner frame of the gyroscope and torque sensor connected to its output. In addition, free gyroscope that identical to the first is included in the design. Rotor of this gyroscope rotates in the opposite direction from the main gyroscope. Additional gyroscope is also provided by similar correction systems. Two output signals of linear acceleration are formed in TGU as the sum of signals from angle sensors of two gyroscopes. Considered TGU provides higher accuracy than single-gyro sensor due to compensation of the errors because of the impact of cross angular velocity and the angular velocity of the Earth.

Author Biographies

Олена Миколаївна Безвесільна, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Pobedy Prospect, 37, Kyiv, Ukraine, 03057

Doctor of Technical Sciences, Professor, Honored Worker of Science of Ukraine

Department of Instrumentation

Андрій Геннадійович Ткачук, Zhytomyr State Technological University, Chernyakhovskogo str., 103, Zhуtomуr, Ukraine, 10005

Candidate of Technical Sciences, Doctoral Student

Department of automation and computer-integrated technologies n. a. prof. B. B. Samotokin

Анна Анатоліївна Гуменюк, Zhytomyr State Technological University, Chernyakhovskogo str., 103, Zhуtomуr, Ukraine, 10005

Candidate of Technical Sciences, Associate Professor

Department of automation and computer-integrated technologies n. a. prof. B. B. Samotokin

Сергій Олексійович Нечай, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Pobedy Prospect, 37, Kyiv, Ukraine, 03057

Candidate of Technical Sciences, Associate Professor

Department of Instrumentation

References

  1. Bezvesilna, O. M., Koval, A. V. (2013). Dvohiroskopnyy hravimetr avtomatyzovanoyi aviatsiynoyi hravimetrychnoyi systemy. Zhytomyr: ZhSTU, 252.
  2. Tadano, S., Takeda, R., Miyagawa, H. (2013). Three Dimensional Gait Analysis Using Wearable Acceleration and Gyro Sensors Based on Quaternion Calculations. Sensors, 13 (7), 9321–9343. doi:10.3390/s130709321
  3. Bezvesilnaya, E. N., Tkachuk, A. H. (2014). Corrected gyrocompass synthesis as a system with changeable structure for aviation gravimetric system with piezoelectric gravimeter. Aviation, 18 (3), 134–140. doi:10.3846/16487788.2014.969878
  4. Xia, D., Yu, C., Kong, L. (2014). The Development of Micromachined Gyroscope Structure and Circuitry Technology. Sensors, 14 (1), 1394–1473. doi:10.3390/s140101394
  5. Singh, A. K. (2007). Piezoelectric Gyro Sensor Technology. Defence Science Journal, 57 (1), 95–103. doi:10.14429/dsj.57.1735
  6. Shiratori, N., Hatakeyama, M., Okada, S. (1999). Temperature Characteristic Compensation of a Miniature Bi-Axial Gyro-Sensor Using a Disk-Type Resonator. Japanese Journal of Applied Physics, Vol. 38, Part 1, № 9B, 5586–5591. doi:10.1143/jjap.38.5586
  7. Koval’, A. V. (2015). Simulation of gravimetric measurements by gyroscopic integrator of linear accelerations. Gyroscopy and Navigation, 6 (4), 344–347. doi:10.1134/s2075108715040070
  8. Korobiichuk, I., Bezvesilna, O., Tkachuk, A., Nowicki, M., Szewczyk, R., Shadura, V. (2016) Aviation gravimetric system. International Journal of Scientific & Engineering Research, 6 (7), 1122–1126.
  9. Tkachev, L. I. (1993). Sistemy inertsialnoi orientirovki. Part 1. Osnovnye polozheniia teorii. Moscow: MEI, 213
  10. Wilmoth, E. D. (1989). An investigation of methods for determining gravity anomalies from an aircraft. Mass. Inst. of Tech., 76.

Published

2016-11-24

How to Cite

Безвесільна, О. М., Ткачук, А. Г., Гуменюк, А. А., & Нечай, С. О. (2016). Calculation and analysis of static errors of two-gyro sensor. Technology Audit and Production Reserves, 6(2(32), 9–17. https://doi.org/10.15587/2312-8372.2016.85452