A study of formation peculiarities and properties of iron coatings with refractory metals on gray cast iron SCH18
DOI:
https://doi.org/10.15587/2312-8372.2017.93546Keywords:
iron coating, gray cast iron, refractory metals, electrodeposition, electrolytic alloy, corrosion resistanceAbstract
The features of the formation of iron multi-component coatings with refractory metals (molybdenum and tungsten) from citrate electrolytes based on iron(III) on substrates made of gray cast iron SCH18 are studied. It is shown that the electrolysis mode and the density of cathodic polarization effect on the current efficiency, the content of alloying elements in coatings and their distribution over the surface, allowing to control electrodeposition process. It is found that with increasing current density coatings are enriched with alloying components while increasing the porosity as a result of the intensification of hydrogen release. Rational intervals of current densities are determined for galvanostatic regime and pulse polarization regime for formation of iron-molybdenum and iron-molybdenum-tungsten coatings with a high content of alloying elements, the output flow is up to 85 % and coating deposition rate of 25-30 µm/h.
It is shown that the addition of the refractory metals in the thin film results in an amorphous coating structure and formation of extended microglobular surface consisting of grains of various sizes. It is found that a high degree of surface extension and substantial contents of tungsten and molybdenum provide high wear resistance performance and corrosion resistance, and low friction coefficient compared with the substrate material. These materials can be used as reinforcement and protection in a variety of industries.
References
- Ved, M. V., Sakhnenko, M. D. (2010). Katalitychni ta zakhysni pokryttia splavamy i skladnymy oksydamy: elektrokhimichnyi syntez, prohnozuvannia vlastyvostei. Kharkiv: NTU «KhPI», 272.
- Yermolenko, I. (2014). Studying peculiarities of cathodic iron reduction from electrolytes based on Fe (III). Technology Audit And Production Reserves, 4(1(18)), 44–48. doi:10.15587/2312-8372.2014.26315
- Tsyntsaru, N., Bobanova, J., Ye, X., Cesiulis, H., Dikusar, A., Prosycevas, I., Celis, J.-P. (2009). Iron–tungsten alloys electrodeposited under direct current from citrate–ammonia plating baths. Surface and Coatings Technology, 203 (20-21), 3136–3141. doi:10.1016/j.surfcoat.2009.03.041
- Tsyntsaru, N., Dikusar, A., Cesiulis, H., Celis, J.-P., Bobanova, Z., Sidel’nikova, S., Belevskii, S., Yapontseva, Yu., Bersirova, O., Kublanovskii, V. (2009). Tribological and corrosive characteristics of electrochemical coatings based on cobalt and iron superalloys. Powder Metallurgy and Metal Ceramics, 48 (7-8), 419–428. doi:10.1007/s11106-009-9150-7
- Tsyntsaru, N. I., Bobanova, Z. I., Kroitoru, D. M., Cheban, V. F., Poshtaru, G. I., Dikusar, A. I. (2010). Effect of a multilayer structure and lubrication on the tribological properties of coatings of Fe-W alloys. Surface Engineering and Applied Electrochemistry, 46 (6), 538–546. doi:10.3103/s1068375510060025
- Donten, M., Cesiulis, H., Stojek, Z. (2000). Electrodeposition and properties of Ni-W, Fe-W and Fe-Ni-W amorphous alloys. A comparative study. Electrochimica Acta, 45 (20), 3389–3396. doi:10.1016/s0013-4686(00)00437-0
- Donten, M., Stojek, Z., Cesiulis, H. (2003). Formation of Nanofibers in Thin Layers of Amorphous W Alloys with Ni, Co, and Fe Obtained by Electrodeposition. Journal of The Electrochemical Society, 150 (2), C95–C98. doi:10.1149/1.1536994
- Cesiulis, H., Donten, M., Donten, M. L., Stojek, Z. (2001). Electrodeposition of Ni-W, Ni-Mo and Ni-Mo-W Alloys from Pyrophosphate Baths. Materials Science (Medziagotyra), 7 (4), 237–241.
- Nabiyouni, G., Saeidi, Sh., Kazeminezhad, I. (2012). Magnetic and nanostructural characteristics of electrodeposited supermalloy (Ni-Fe-Mo) thin films. Research and Reviews in Materials Science and Chemistry, 1 (1), 1–14.
- Podlaha-Murphy, E. J. (2013). Electrodeposition of Ni-Fe-Mo-W Alloys. 1st Quarterly Report January-March, 2013. AESF Research Project #R-117. NASF Surface Technology White Papers, 77 (12), 11–17.
- Podlaha-Murphy, E. J. (2013). Electrodeposition of Ni-Fe-Mo-W Alloys. 2nd Quarterly Report April-June, 2013. AESF Research Project #R-117. NASF Surface Technology White Papers, 77 (12), 18–27.
- Podlaha, E. J. (1997). Induced Codeposition. Journal of The Electrochemical Society, 144 (5), 1672–1680. doi:10.1149/1.1837658
- Podlaha-Murphy, E. J. (2014). Electrodeposition of Ni-Fe-Mo-W Alloys. 4th thru 6th Quarterly Reports October, 2013 – June 2014. AESF Research Project #R-117. NASF Surface Technology White Papers, 79 (2), 1–14.
- Sun, S., Bairachna, T., Podlaha, E. J. (2013). Induced Codeposition Behavior of Electrodeposited NiMoW Alloys. Journal of the Electrochemical Society, 160 (10), D434–D440. doi:10.1149/2.014310jes
- Kuznetsov, V. V., Golyanin, K. E., Pshenichkina, T. V. (2012). Electrodeposition of iron-molybdenum alloy from ammonia-citrate electrolyte. Russian Journal of Electrochemistry, 48 (11), 1107–1112. doi:10.1134/s1023193512110109
- Kuznetsov, V. V., Golyanin, K. E., Pshenichkina, T. V., Lyakhov, B. F., Lyashenko, S. E. (2013). Chemical composition of Fe–Mo alloys obtained by electrodeposition. Mendeleev Communications, 23 (6), 331–333. doi:10.1016/j.mencom.2013.11.009
- Barbano, E. P., Da Silva, F. S., Carlos, I. A., Valles, E. (2017). New electrolytic bath for electrodeposition of protective binary FeMo and ternary FeMoP films. Journal of Alloys and Compounds, 695, 319–328. doi:10.1016/j.jallcom.2016.10.208
- Ved’, M. V., Sakhnenko, N. D., Karakurchi, A. V., Zyubanova, S. I. (2014). Electrodeposition of iron-molybdenum coatings from citrate electrolyte. Russian Journal of Applied Chemistry, 87 (3), 276–282. doi:10.1134/s1070427214030057
- Karakurkchi, A. V., Ved’, M. V., Sakhnenko, N. D., Zyubanova, S. I., Yermolenko, I. Yu. (2014). Elektroosazhdenie dvojnyh i trojnyh splavov zheleza iz tcitratnyh elektrolitov. Nanotehnologii: nauka i proizvodstvo, 3 (30), 24–27.
- Karakurkchi, A. V., Ved’, M. V., Sakhnenko, N. D., Yermolenko, I. Y. (2015). Electrodeposition of iron–molybdenum–tungsten coatings from citrate electrolytes. Russian Journal of Applied Chemistry, 88 (11), 1860–1869. doi:10.1134/s1070427215011018x
- Karakurkchi, A. V., Ved’, M. V., Yermolenko, I. Y., Sakhnenko, N. D. (2016). Electrochemical deposition of Fe–Mo–W alloy coatings from citrate electrolyte. Surface Engineering and Applied Electrochemistry, 52 (1), 43–49. doi:10.3103/s1068375516010087
- Ved’, M. V., Sakhnenko, M. D., Bohoyavlens’ka, O. V., Nenastina, T. O. (2008). Modeling of the surface treatment of passive metals. Materials Science, 44 (1), 79–86. doi:10.1007/s11003-008-9046-6
- Ved, M., Glushkova, M., Sakhnenko, N. (2013). Catalytic properties of binary and ternary alloys based on silver. Functional Materials, 20 (1), 87–91. doi:10.15407/fm20.01.087
- Yar-Mukhamedova, G., Ved, M., Sakhnenko, N., Karakurkchi, A., Yermolenko, I. (2016). Iron binary and ternary coatings with molybdenum and tungsten. Applied Surface Science, 383, 346–352. doi:10.1016/j.apsusc.2016.04.046
- Karakurkchi, A. V., Ved', M. V., Sakhnenko, N. D., Yermolenko, I. Yu., Zyubanova, S. I., Kolupayeva, Z. I. (2015). Functional properties of multicomponent galvanic alloys of iron with molybdenum and tungsten. Functional Materials, 22 (2), 181–187. doi:10.15407/fm22.02.181
- Ved’, M. V., Sakhnenko, M. D., Karakurkchi, H. V., Ermolenko, I. Y., Fomina, L. P. (2016). Functional Properties of Fe−Mo and Fe−Mo−W Galvanic Alloys. Materials Science, 51 (5), 701–710. doi:10.1007/s11003-016-9893-5
- Sakhnenko, N. D., Ved’, M. V., Karakurkchi, A. V. (2013). Electrodeposition of the iron-molybdenum alloys. Issues of Chemistry and Chemical Technology, 4, 178‒182.
- Ved’, M. V., Sakhnenko, N. D., Karakurkchi, A. V., Yermolenko, I. Yu. (2015). Electroplating and functional properties of Fe-Mo and Fe-Mo-W coatings. Issues of Chemistry and Chemical Technology, 5-6 (98), 53–60.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Анна Владимировна Каракуркчи
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.