Construction of mathematical model of dissolution process of solids under action of ultrasound

Authors

DOI:

https://doi.org/10.15587/2312-8372.2017.93629

Keywords:

dissolution, ultrasound, diffusion, mass transfer, intensification, cavitation, bubbles, solid granule, rate

Abstract

An influence of the ultrasound beam on the process, dissolution of solids in liquid solvents is considered: influence of frequency, intensity, velocity of acoustic vibrations, cavitation and acoustic flows on mass transfer process.

Experimental researches show that the intensification of dissolution process of solids in liquid solvents under action of ultrasound is influenced by acoustic flows, microflows and under influence of cavitation bubbles. Development of new efficient equipment for solution requires the development of calculation methods of dissolution processes of solids in liquid solvents under conditions of ultrasonic irradiation. Such methods should take into account the characteristics of ultrasonic generators, irradiation frequency of ultrasonic vibrations, power and intensity of ultrasonic vibrations.

Mathematical model of dissolution process of the granule is constructed. It identifies the change of size of the granule over time under influence of the source of ultrasonic irradiation. Mathematical model consists of three differential equations used to calculate depending on the ratio of the granule size and the maximum turbulence scale of acoustic flows and for cavitation.

The mathematical model will enable use in conducting numerous studies as a basis of equipment calculation methods for dissolution process of granular material.

Author Biographies

Viktorij Mel’nick, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremohy ave., 37, Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor, Head of Department

Department of Biotechnics and Engineering

Ludmila Ruzhinska, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of Biotechnics and Engineering

Vitalij Forostyanko, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremohy ave., 37, Kyiv, Ukraine, 03056

Department of Biotechnics and Engineering

References

  1. Berezin, B. D., Krestov, G. A. (1999). Osnovnye zakony himii. Moscow: Nauka, 95.
  2. Zdanovskii, A. B.; In: Viazov, V. V. (1956). Kinetika rastvoreniia prirodnyh solei v usloviiah vynuzhdennoi konvektsii. Trudy Vsesoiuznogo nauchno-issledovatel'skogo instituta galurgii. Vol. 33. Leningrad: Goshimizdat, 219.
  3. Nikiforov, M. Yu., Alper, G. A., Durov, V. A., Korolev, V. P., Viugin, A. I., Krestov, G. A., Miasoedova, V. V., Krestov, A. G. (1989). Rastvory neelektrolitov v zhidkostiah. Moscow: Nauka, 263.
  4. Lebedev, N. M., Tihonov, M. A., Kazukov, O. V., Lebedev, O. Yu., Kireeva, Z. V., Kuznetsova, O. B. (2007). Issledovanie sovmestnogo vliianiia ul'trafioletovogo oblucheniia (UFO) i ul'trazvukovoi obrabotki (UZO) na dinamiku okislitel'no-vosstanovitel'nyh protsessov v vodnoi srede. Materialy VI Kongressa obogatitelei stran SNG, 28–30 marta 2007 g. Vol. II. LLC «Aleksandra-Plius», 234–237.
  5. Mel’nick, V. M., Trivailo, M. S., Karachun, V. V. (2009). Masoobmin i aeratsiia v bioreaktorakh. Kyiv: Korniichuk, 96.
  6. Kudriashov, V. L., Siverskaia, A. N., Lebedev, N. M., Naumov, K. V., Lyzhin, V. E., Pavlova, E. S., Pogorzhelskaia, N. S., Malikova, N. V. (2002). Effektivnost' i problemy primeneniia ul'trazvuka v tehnologicheskih liniiah pishchevoi promyshlennosti. Trudy nauchno-prakticheskoi konferentsii «Tehnologicheskie aspekty kompleksnoi pererabotki sel'skohoziaistvennogo syr'ia pri proizvodstve ekologicheski bezopasnyh pishchevyh produktov obshchego i spetsial'nogo naznacheniia», 11–14 sentiabria 2002 g. Uglich: Rossel'hozakademiia, 249–252.
  7. Ponomarev, V. D. (1976). Ekstragirovanie lekarstvennogo syr'ia. Moscow: Meditsina, 202.
  8. Lebedev N. M., Kazukov O. V., Koniahin A. V.; assignee: LLC «Aleksandra-Plius». (10.11.2010). Complex module for treating liquid medium in stream. Patent RU 2403209 C2. Appl. № 2008115030. Filed 16.04.2008. Available: https://patents.google.com/patent/RU2403209C2/ru
  9. Durbha, K. S., Aravamudan, K. (2012). Quantification of surface area and intrinsic mass transfer coefficient for ultrasound-assisted dissolution process of a sparingly soluble solid dispersed in aqueous solutions. Ultrasonics Sonochemistry, 19 (3), 509–521. doi:10.1016/j.ultsonch.2011.09.008
  10. Pereira, S. V., Colombo, F. B., de Freitas, L. A. P. (2016). Ultrasound influence on the solubility of solid dispersions prepared for a poorly soluble drug. Ultrasonics Sonochemistry, 29, 461–469. doi:10.1016/j.ultsonch.2015.10.022
  11. Grenman, H., Murzina, E., Ronnholm, M., Eranen, K., Mikkola, J.-P., Lahtinen, M., Salmi, T., Murzin, D. Y. (2007). Enhancement of solid dissolution by ultrasound. Chemical Engineering and Processing: Process Intensification, 46 (9), 862–869. doi:10.1016/j.cep.2007.05.013
  12. Inigo, A. C., Alonso, R., Vicente-Tavera, S. (2001). Dissolution of salts crystallised in building materials using ultrasound: an alternative to NORMAL (1983) standard methodology. Ultrasonics Sonochemistry, 8 (2), 127–130. doi:10.1016/s1350-4177(00)00062-6
  13. Lan, W., Liu, C.-F., Yue, F.-X., Sun, R.-C., Kennedy, J. F. (2011). Ultrasound-assisted dissolution of cellulose in ionic liquid. Carbohydrate Polymers, 86 (2), 672–677. doi:10.1016/j.carbpol.2011.05.013
  14. Sicaire, A.-G., Vian, M. A., Fine, F., Carre, P., Tostain, S., Chemat, F. (2016). Ultrasound induced green solvent extraction of oil from oleaginous seeds. Ultrasonics Sonochemistry, 31, 319–329. doi:10.1016/j.ultsonch.2016.01.011
  15. Karimi, M., Jenkins, B., Stroeve, P. (2014). Ultrasound irradiation in the production of ethanol from biomass. Renewable and Sustainable Energy Reviews, 40, 400–421. doi:10.1016/j.rser.2014.07.151
  16. Akselrud, G. A. (1970). Massoobmen v sisteme tverdoe telo-zhidkost'. Lviv: Lviv University Publishing, 188.
  17. Shutilov, V. A. (1980). Osnovy fiziki ul'trazvuka. Leningrad: Leningrad University Publishing, 280.
  18. Novitskii, B. G. (1983). Primenenie akusticheskih kolebanii v himiko-tehnologicheskih protsessah. Moscow: Himiia, 192.
  19. Ultraschall für Öl, Gas und erneuerbare Kraftstoffe. Hielscher – Ultrasound Technology. Available: https://www.hielscher.com/de/oil_gas_01.htm

Published

2017-01-31

How to Cite

Mel’nick, V., Ruzhinska, L., & Forostyanko, V. (2017). Construction of mathematical model of dissolution process of solids under action of ultrasound. Technology Audit and Production Reserves, 1(3(33), 28–33. https://doi.org/10.15587/2312-8372.2017.93629

Issue

Section

Chemical and Technological Systems: Original Research