Production function with constant elasticity of substitution resources
DOI:
https://doi.org/10.33987/vsed.3(58).2015.228-234Keywords:
CES-function, optimization, capital-labor ratio, marginal rate, substitution of the resourcesAbstract
The advantages of the production function with constant elasticity of substitution of resources (CES-function) and the possibility of its use in economic calculations are investigated in the article. The most important economic and mathematical parameters of CES-function and software its unknown factors evaluation are discussed. The optimal capital-maximizing output is determined. It is shown that in this case the marginal rate of substitution of resources equals to one. A new interpretation of it as an indicator of imbalances when investing in aggregate factors «capital» and «labor» is proposed. Deduced marginal rate of substitution of resources based on the optimal capital-labor ratio can be used as an important additional feature when applying the production function in the analysis output in the enterprises of Ukraine.
References
Yankovyi, V. О. (2015), «Comparison of the properties of the Cobb-Douglas production function and CES-function»: Proceedings of Intern. scientific and practical conf. «Economics of Sustainable Development: theoretical approaches and practical recommendations» (13–16 Sept. 2015) [Porivniannia vlastyvostei vyrobnychoi funktsii Kobba-Duhlasa i CES-funktsii: Materialy Mizhnarod. nauch.-prakt. konf. «Ekonomika staloho rozvytku: teoretychni pidkhody tа praktychni rekomendatsii»], Kosice, Slovakia, pp. 149–150 (ukr)
Econometrics [Ekonometriya] (2003). Ed. by A. F. Kabak, O. V. Protsenko. NMTSO-OSEU, Odesa, 562 p. (ukr)
Podladchikov, V. N. Microeconomics. Production functions [Mikroekonomika. Proizvodstvennye funktsii], available at: http://i.kpi.ua/podladchikov/-menu=micro-firm-2-.htm (rus)
Kazakova, M. V. (2011), «Analysis of the properties of production functions used in the decomposition of economic growth» [Analiz svoystv proizvodstvennykh funktsiy, ispolzuemykh pri dekompozitsii ekonomicheskogo rosta], available at: ftp://ftp.repec.org/opt/ReDIF/RePEc/rnp/wpaper/31.pdf (rus)
Vitlinskiy, V. V. (2003), Simulation of economy [Modeliuvannia ekonomiky], KNEU, Kyiv, 408 p. available at: http://fingal.com.ua/content/view/202/39 (ukr)
Artemova, A. V., Grishchenko, M. A., Lisnyak, D. V. (2014), Methods of estimating the costs in the production process [Metodika otsenivaniya zatrat pri proizvodstve produktsii], available at: http://nbuv.gov.ua/UJRN/piprp_2014_1_3. (rus)
Bondar, M. V., Mahlay, A. (2014), «Production functions in economic modelling» [Vyrobnhchi funktsii v ekonomiko-matematychnomu modeliuvanni], available at: http://www.rusnauka.com/14_ENXXI_2014/Matemathics/4_169090.doc.htm (ukr)
Borovskoy, D. N. (2008), Production functions and problem of the choice of economic and mathematical model of active element [Proizvodstvennye funktsii i problema vybora ekonomiko-matematicheskoy modeli aktivnogo elementa], Radio-electronic and computer systems, No. 1 (28), pp. 172–177 (rus)
Shumska, S. S. (2007), Production function in economic analysis: theory and practice of using [Vyrobnycha funktsiia v ekonomichnomu analizi: teoriia i praktyka vykorystannia], Economics forecasting, No. 2, pp. 138–153 (ukr)
Kmenta, J. (1967), On Estimation of the CES Production Function. International Economic Review, Vol. 8, No. 2, pp. 180–189.
Kubіniva, M., Tabata, M., Tabata, S., Hasebe, Y. (1991), Mathematical economics on a personal computer. Ed. by M. Kubіniva. Trans. from Japanese [Matematicheskaya ekonomika na personalnom kompiutere], Finance and Statistics, Moscow, 304 p. (rus)
Yankovyi, V. О. (2006), «Prediction of the breakeven investment zone in the baking industry by means of the production function» [Prohnozuvannia zony bezzbytkovosti investytsii u khlibopekarsku promyslovist za dopomohoiu vyrobnychoi funktsii], Socio-economic research bulletin, ONEU, Odessa, No. 22, pp. 410–414 (ukr)
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Socio-Economic Research Bulletin
This work is licensed under a Creative Commons Attribution 4.0 International License.