Current conception about the pathogenesis and intensive care of severe COVID-19 (review)




COVID-19, SARS-CoV-2, acute respiratory failure, acute respiratory distress syndrome, respiratory therapy, corticosteroid therapy


The aim of the research. The aim of this work was to summarize the scientific literature data on the pathogenesis and intensive care of the severe course of coronavirus infection.

Materials and methods. Databases such as PubMed, Google Scholar, Scopus and Web Of Science 2020-2021 were used for literary searches.

Results. An intense inflammatory response against the SARS-CoV-2 virus in COVID-19 patients causes a cytokine storm and hypercoagulability with the development of acute respiratory distress syndrome (ARDS) and multiple organ failure. Approximately 17 % to 35 % of hospitalized patients with COVID-19 are treated in the intensive care unit, most often due to hypoxemic respiratory failure and the development of ARDS, and between 29 % and 91 % of patients in intensive care units require invasive ventilation.

In addition to acute respiratory failure, hospitalized patients may have acute renal failure (9 %), liver dysfunction (19 %), coagulation disorders (10 %–25 %), and septic shock (6 %).

More than 75 % of hospitalized patients require additional oxygen therapy. Respiratory support could vary from the need for oxygen supplementation through a nasal catheter to invasive ventilation or extracorporeal membrane oxygenation in patients with the most severe ARDS.

The uncontrolled inflammation and coagulation seen in COVID-19 patients is similar to multifactorial ARDS, where a plethora of evidence has demonstrated the ability of long-term corticosteroid therapy (CST) to reduce inflammation-coagulation-fibroproliferation and accelerate recovery.

With regard to the assessment of the benefits of therapeutic anticoagulation in patients with elevated D-dimer, the question has not yet been finally resolved, and research devoted to this is still ongoing.

Conclusions. The approaches to respiratory, anticoagulant, anti-inflammatory therapy in critically ill patients with COVID-19 require further research to determine the optimal treatment tactics

Author Biographies

Marine Georgiyants, Kharkiv Medical academy of Postgraduate Education

Doctor of Medical Sciences, Professor, Vice-Rector

Department of Anesthesiology, Pediatric Anesthesiology and Intensive Care

Volodymyr Korsunov, Kharkiv Medical Academy of Postgraduate Education

Doctor of Medical Sciences, Professor

Department of Anesthesiology, Pediatric Anesthesiology and Intensive Care

Sergii Dubrov, Bogomolets National Medical University

Doctor of Medical Sciences, Professor, Head of Department

Department of Anesthesiology and Intensive Care

Oleg Loskutov, Shupyk National Healthcare University of Ukraine

Doctor of Medical Sciences, Professor

Department of "Anesthesiology and Intensive Care"

Nataliia Bohuslavska, Kharkiv Medical Academy of Postgraduate Education

PhD, Associate Professor

Department of Anesthesiology, Pediatric Anesthesiology and Intensive Care

Vadim Nikonov, Kharkiv Medical Academy of Postgraduate Education

Doctor of Medical Sciences, Professor

Department of Emergency Medicine and Disaster Medicine

Lidiya Cherkashyna, Kharkiv Medical Academy of Postgraduate Education

Doctor of Medical Sciences, professor

Department of Family Medicine, Folk and Alternative Medicine and Sanology

Oleksiy Oparin, Kharkiv Medical Academy of Postgraduate Education

Doctor of Medical Sciences, Professor

Department of Therapy, Rheumatology and Clinical Pharmacology

Pavel Nartov, Kharkiv Medical Academy of Postgraduate Education

Doctor of Medical Sciences, Professor

Department of Infectious Diseases

Maksym Holianishchev, Kharkiv Medical Academy of Postgraduate Education

PhD, Associate Professor

Department of Anesthesiology and Intensive Care


Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z. et. al. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet, 395 (10229), 1054–1062. doi:

Karagiannidis, C., Mostert, C., Hentschker, C., Voshaar, T., Malzahn, J., Schillinger, G. et. al. (2020). Case characteristics, resource use, and outcomes of 10 021 patients with COVID-19 admitted to 920 German hospitals: an observational study. The Lancet Respiratory Medicine, 8 (9), 853–862. doi:

Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y. et. al. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet, 395 (10223), 507–513. doi:

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y. et. al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395 (10223), 497–506. doi:

Li, M.-Y., Li, L., Zhang, Y., Wang, X.-S. (2020). Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infectious Diseases of Poverty, 9 (1). doi:

Puelles, V. G., Lütgehetmann, M., Lindenmeyer, M. T., Sperhake, J. P., Wong, M. N., Allweiss, L. et. al. (2020). Multiorgan and Renal Tropism of SARS-CoV-2. New England Journal of Medicine, 383 (6), 590–592. doi:

Goldsmith, C. S., Tatti, K. M., Ksiazek, T. G., Rollin, P. E., Comer, J. A., Lee, W. W. et. al. (2004). Ultrastructural Characterization of SARS Coronavirus. Emerging Infectious Diseases, 10 (2), 320–326. doi:

Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H. et. al. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, 395 (10224), 565–574. doi:

Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S. et. al. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 18 1(2), 271–280. doi:

Sungnak, W., Huang, N., Bécavin, C., Berg, M., Queen, R. et. al. (2020). SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nature Medicine, 26 (5), 681–687. doi:

Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C. et. al. (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet Respiratory Medicine, 8 (4), 420–422. doi:

Jose, R. J., Manuel, A. (2020). COVID-19 cytokine storm: the interplay between inflammation and coagulation. The Lancet Respiratory Medicine, 8 (6), e46–e47. doi:

Ciceri, F., Beretta, L., Scandroglio, A. M., Colombo, S. et. al. (2020). Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Critical Care and Resuscitation, 22 (2), 95–97. doi:

Coperchini, F., Chiovato, L., Croce, L., Magri, F., Rotondi, M. (2020). The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine & Growth Factor Reviews, 53, 25–32. doi:

Manjili, R. H., Zarei, M., Habibi, M., Manjili, M. H. (2020). COVID-19 as an Acute Inflammatory Disease. The Journal of Immunology, 205 (1), 12–19. doi:

Van de Veerdonk, F. L., Netea, M. G., van Deuren, M., van der Meer, J. W., de Mast, Q., Brüggemann, R. J., van der Hoeven, H. (2020). Kallikrein-kinin blockade in patients with COVID-19 to prevent acute respiratory distress syndrome. eLife, 9. doi:

Tang, N., Li, D., Wang, X., Sun, Z. (2020). Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. Journal of Thrombosis and Haemostasis, 18 (4), 844–847. doi:

Thachil, J., Tang, N., Gando, S., Falanga, A., Cattaneo, M., Levi, M. et. al. (2020). ISTH interim guidance on recognition and management of coagulopathy in COVID‐19. Journal of Thrombosis and Haemostasis, 18 (5), 1023–1026. doi:

Wiersinga, W. J., Rhodes, A., Cheng, A. C., Peacock, S. J., Prescott, H. C. (2020). Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19). JAMA, 324 (8), 782. doi:

Vincent, J.-L., Slutsky, A. S. (2020). Coronavirus: just imagine…. Critical Care, 24 (1). doi:

Costa, I., Bittar, C. S., Rizk, S. I., Araújo Filho, A. E., Santos, K. A. Q., Machado, T. I. V. et. al. (2020). The heart and COVID-19: what cardiologists need to know. Arq Bras Cardiol, 114 (5), 805–816. doi:

Berger, J. R. (2020). COVID-19 and the nervous system. Journal of NeuroVirology, 26 (2), 143–148. doi:

Fraissé, M., Logre, E., Pajot, O., Mentec, H., Plantefève, G., Contou, D. (2020). Thrombotic and hemorrhagic events in critically ill COVID-19 patients: a French monocenter retrospective study. Critical Care, 24 (1). doi:

Klok, F. A., Kruip, M. J. H. A., van der Meer, N. J. M., Arbous, M. S., Gommers, D. A. M. P. J., Kant, K. M. et. al. (2020). Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thrombosis Research, 191, 145–147. doi:

Docherty, A. B., Harrison, E. M., Green, C. A., Hardwick, H. E., Pius, R., Norman, L. et. al. (2020). Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ, 369, 1985. doi:

Lapostolle, F., Schneider, E., Vianu, I., Dollet, G., Roche, B., Berdah, J. et. al. (2020). Clinical features of 1487 COVID-19 patients with outpatient management in the Greater Paris: the COVID-call study. Internal and Emergency Medicine, 15 (5), 813–817. doi:

Grasselli, G., Zangrillo, A., Zanella, A., Antonelli, M., Cabrini, L., Castelli, A. et. al. (2020). Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA, 323 (16), 1574–1581. doi:

Myers, L. C., Parodi, S. M., Escobar, G. J., Liu, V. X. (2020). Characteristics of Hospitalized Adults With COVID-19 in an Integrated Health Care System in California. JAMA, 323 (21), 2195–2198. doi:

Force, A. D. T., Ranieri, V. M., Rubenfeld, G. D., Thompson, B. T., Ferguson, N. D., Caldwell, E. et. al. (2012). Acute respiratory distress syndrome: the Berlin Definition. JAMA, 307 (23), 2526–2533. doi:

Wu, Z., McGoogan, J. M. (2020). Characteristics of and important lessons from the Coronavirus Disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese center for disease control and prevention. JAMA, 323 (13), 1239. doi:

Gattinoni, L., Chiumello, D., Caironi, P., Busana, M., Romitti, F., Brazzi, L., Camporota, L. (2020). COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Medicine, 46 (6), 1099–1102. doi:

Marini, J. J., Gattinoni, L. (2020). Management of COVID-19 Respiratory Distress. JAMA, 323 (22), 2329–2330. doi:

Mao, R., Qiu, Y., He, J.-S., Tan, J.-Y., Li, X.-H., Liang, J. et. al. (2020). Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis. The Lancet Gastroenterology & Hepatology, 5 (7), 667–678. doi:

Levi, M., Thachil, J., Iba, T., Levy, J. H. (2020). Coagulation abnormalities and thrombosis in patients with COVID-19. The Lancet Haematology, 7 (6), e438–e440. doi:

Yang, X., Yu, Y., Xu, J., Shu, H., Xia, J., Liu, H. et. al. (2020). Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. The Lancet Respiratory Medicine, 8 (5), 475–481. doi:

Rice, T. W., Wheeler, A. P., Bernard, G. R., Hayden, D. L., Schoenfeld, D. A., Ware, L. B. (2007). Comparison of the SpO2/FIO2 ratio and the PaO2/FIO2 ratio in patients with acute lung injury or ARDS. Chest, 132 (2), 410–417. doi:

Tobin, M. J., Laghi, F., Jubran, A. (2020). Caution about early intubation and mechanical ventilation in COVID-19. Annals of Intensive Care, 10 (1). doi:

Rola, P., Farkas, J., Spiegel, R., Kyle-Sidell, C., Weingart, S., Duggan, L. et. al. (2020). Rethinking the early intubation paradigm of COVID-19: time to change gears? Clinical and Experimental Emergency Medicine, 7 (2), 78–80. doi:

Demoule, A., Vieillard Baron, A., Darmon, M., Beurton, A., Géri, G., Voiriot, G. et. al. (2020). High-Flow Nasal Cannula in Critically III Patients with Severe COVID-19. American Journal of Respiratory and Critical Care Medicine, 202 (7), 1039–1042. doi:

Alhazzani, W., Møller, M. H., Arabi, Y. M., Loeb, M., Gong, M. N., Fan, E. et. al. (2020). Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Medicine, 46 (5), 854–887. doi:

Elharrar, X., Trigui, Y., Dols, A.-M., Touchon, F., Martinez, S., Prud’homme, E., Papazian, L. (2020). Use of Prone Positioning in Nonintubated Patients With COVID-19 and Hypoxemic Acute Respiratory Failure. JAMA, 323 (22), 2336–2338. doi:

Coppo, A., Bellani, G., Winterton, D., Di Pierro, M., Soria, A., Faverio, P. et. al. (2020). Feasibility and physiological effects of prone positioning in non-intubated patients with acute respiratory failure due to COVID-19 (PRON-COVID): a prospective cohort study. The Lancet Respiratory Medicine, 8 (8), 765–774. doi:

Sorbello, M., El‐Boghdadly, K., Di Giacinto, I., Cataldo, R., Esposito, C. et. al. (2020). The Italian coronavirus disease 2019 outbreak: recommendations from clinical practice. Anaesthesia, 75 (6), 724–732. doi:

Tobin, M. J. (2020). Basing Respiratory Management of COVID-19 on Physiological Principles. American Journal of Respiratory and Critical Care Medicine, 201 (11), 1319–1320. doi:

Coronavirus (COVID-19) Update: FDA Issues Emergency Use Authorization for Potential COVID-19 Treatment (2020). Available at:

De Wit, E., Feldmann, F., Cronin, J., Jordan, R., Okumura, A., Thomas, T. et. al. (2020). Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proceedings of the National Academy of Sciences, 117 (12), 6771–6776. doi:

Sheahan, T. P., Sims, A. C., Leist, S. R., Schäfer, A., Won, J., Brown, A. J. et. al. (2020). Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nature Communications, 11 (1). doi:

Protokol «Nadannia medychnoi dopomohy dlia likuvannia koronavirusnoi khvoroby (COVID-19)» (2021). Nakaz MOZ Ukrainy No. 638. 06.04.2021. Available at:

NIH Clinical Trial Shows Remdesivir Accelerates Recovery from Advanced COVID-19 (2020). Available at:

Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., Manson, J. J. (2020). COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet, 395 (10229), 1033–1034. doi:

Meduri, G. U., Annane, D., Chrousos, G. P., Marik, P. E., Sinclair, S. E. (2009). Activation and Regulation of Systemic Inflammation in ARDS. Chest, 136 (6), 1631–1643. doi:

Bhimraj, A., Morgan, R. L., Shumaker, A. H., Lavergne, V., Baden, L., Cheng, V. C.-C. et. al. (2020). Infectious Diseases Society of America Guidelines on the Treatment and Management of Patients With Coronavirus Disease 2019 (COVID-19). Clinical Infectious Diseases. doi:

COVID-19 Treatment Guidelines Panel Coronavirus disease 2019 (COVID-19) treatment guidelines National Institutes of Health (2020). Available at:

Horby, P., Lim, W. S., Emberson, J., Mafham, M., Bell, J. et. al. (2020). Effect of Dexamethasone in Hospitalized Patients with COVID-19 – Preliminary Report. doi:

Raju, R., V., Prajith, V., Biatris, P. S., Chander J., S. J. U. (2021). Therapeutic role of corticosteroids in COVID-19: a systematic review of registered clinical trials. Future Journal of Pharmaceutical Sciences, 7 (1). doi:

Guaraldi, G., Meschiari, M., Cozzi-Lepri, A., Milic, J., Tonelli, R., Menozzi, M. et. al. (2020). Tocilizumab in patients with severe COVID-19: a retrospective cohort study. The Lancet Rheumatology, 2 (8), e474–e484. doi:




How to Cite

Georgiyants, M., Korsunov, V., Dubrov, S., Loskutov, O., Bohuslavska, N., Nikonov, V., Cherkashyna, L., Oparin, O., Nartov, P., & Holianishchev, M. (2021). Current conception about the pathogenesis and intensive care of severe COVID-19 (review). ScienceRise: Medical Science, (5(44), 4–9.



Medical Science