Research of safety of flax fibers for products of medical and sanitary-hygienic appointment

Authors

DOI:

https://doi.org/10.15587/2312-8372.2017.100025

Keywords:

maximum permissible concentration, hazard class, heavy metals in flax, safety of flax fiber

Abstract

Modern natural fibers, including flax, from the point of view of safety for humans should be considered in terms of their chemical composition. Regulatory documents on this issue are imperfect. The reasons for this are the lack of regulation of the chemical composition of flax fiber and normalization of heavy metals in it. Therefore, the object of this research is the process of development of regulatory documents on the safety of flax fiber of medical and sanitary-hygienic appointment.

It is proposed to develop modern regulatory documents taking into account the requirements of the international standard Oeko-Tex Standard 100 and the requirements of the State Sanitary Norms and Regulations. At the same time, the maximum permissible concentration of all chemical elements in flax fiber is the regulation criteria. The proposed recommendations will contribute to increasing the requirements for fiber safety and minimizing the appearance of dangerous textile products on the Ukrainian market, the production of which spends considerable resources.

The introduction of these results at the enterprise will contribute to the expansion of the assortment of safe products of medical and sanitary-hygienic appointment and markets for its sale.

Author Biographies

Valentyna Entushenko, Kherson National Technical University, Berislavskoe highway, 24, Kherson, Ukraine, 73008

PhD, Associate Professor

Department of Commodity Science, Standardization and Certification

Oksana Zakora, Kherson National Technical University, Berislavskoe highway, 24, Kherson, Ukraine, 73008

PhD, Associate Professor

Department of Examination, Technology and Design of Textiles

Artem Evtushenko, Kherson National Technical University, Berislavskoe highway, 24, Kherson, Ukraine, 73008

Postgraduate Student

Department of Examination, Technology and Design of Textiles

References

  1. Zhivetin, V. V., Ginzburg, L. N., Olshanskaia, O. M. (2002). Len i ego kompleksnoe ispol'zovanie. Moscow: Inform-Znanie, 400.
  2. Artemov, A. V., Miheeva, O. A. (2009). Mediko-gigienicheskie svoistva l'nianyh tkanei. Dizain i tehnologii, 12 (54), 90–96.
  3. Touré, A., Xueming, X. (2010). Flaxseed Lignans: Source, Biosynthesis, Metabolism, Antioxidant Activity, Bio-Active Components, and Health Benefits. Comprehensive Reviews in Food Science and Food Safety, 9 (3), 261–269. doi:10.1111/j.1541-4337.2009.00105.x
  4. Zhivetin, V. V., Ginzburg, L. N. (1998). Len na rubezhe XX i XXI vekov. Moscow: IPO «Poligrom», 184.
  5. Yakutina, N. V., Artemov, A. V., Liubskaya, O. G. (2011). Medical and biological aspects of ecological characteristics of flax. Science Review, 5, 28–33.
  6. Yakutina, N. V., Artemov, A. V., Liubskaya, O. G. (2013). Sorption properties of linen fabrics. Science Review, 3, 35–37.
  7. Zhivetin, V. V., Osipov, B. P., Osipova, N. N. (2002). L'nianoe syr'e v izdeliiah meditsinskogo i sanitarno-gigienicheskogo naznacheniia. Rossiiskii himicheskii zhurnal, XLVI (2), 31–35.
  8. Halyk, I. S., Kotsevych, O. B., Semak, B. D. (2006). Ekolohichna bezpeka ta biostiikist tekstylnykh materialiv. Lviv: Lviv Commercial Academy, 232.
  9. Yarshchuk, O. V., Bokhonko, O. P., Lepikash, O. Yu. (2011). Strukturnyi pidkhid do optymizatsii pokaznykiv yakosti tekstylnykh materialiv ta vyrobiv z nykh. Visnyk Khmelnytskoho natsionalnoho universytetu. Tekhnichni nauky, 1, 209–213.
  10. Prodanchuk, M. H., Senenko, L. H., Kravchuk, O. P., Lieposhkin, I. V. (2004). Suchasni problemy bezpechnosti tekstylnykh materialiv ta odiahu v ramkakh harmonizatsii z vymohamy standartiv krain yevropeiskoho spivtovarystva. Suchasni problemy toksykolohii, 1, 3–8.
  11. Angelova, V., Ivanova, R., Delibaltova, V., Ivanov, K. (2004). Bio-accumulation and distribution of heavy metals in fibre crops (flax, cotton and hemp). Industrial Crops and Products, 19 (3), 197–205. doi:10.1016/j.indcrop.2003.10.001
  12. Rezić, I. (2013). Cellulosic fibers – Biosorptive materials and indicators of heavy metals pollution. Microchemical Journal, 107, 63–69. doi:10.1016/j.microc.2012.07.009
  13. Kulma, A., Skórkowska-Telichowska, K., Kostyn, K., Szatkowski, M., Skała, J., Drulis-Kawa, Z., Preisner, M., Żuk, M., Szperlik, J., Wang, Y. F., Szopa, J. (2015). New flax producing bioplastic fibers for medical purposes. Industrial Crops and Products, 68, 80–89. doi:10.1016/j.indcrop.2014.09.013
  14. Anjum, S., Abbasi, B. H., Doussot, J., Favre-Réguillon, A., Hano, C. (2017). Effects of photoperiod regimes and ultraviolet-C radiations on biosynthesis of industrially important lignans and neolignans in cell cultures of Linum usitatissimum L. (Flax). Journal of Photochemistry and Photobiology B: Biology, 167, 216–227. doi:10.1016/j.jphotobiol.2017.01.006
  15. Stamboulis, A., Baillie, C. A., Peijs, T. (2001). Effects of environmental conditions on mechanical and physical properties of flax fibers. Composites Part A: Applied Science and Manufacturing, 32 (8), 1105–1115. doi:10.1016/s1359-835x(01)00032-x
  16. Bagheri, Z. S., El Sawi, I., Schemitsch, E. H., Zdero, R., Bougherara, H. (2013). Biomechanical properties of an advanced new carbon/flax/epoxy composite material for bone plate applications. Journal of the Mechanical Behavior of Biomedical Materials, 20, 398–406. doi:10.1016/j.jmbbm.2012.12.013
  17. Kunert-Keil, C., Gredes, T., Meyer, A., Wróbel-Kwiatkowska, M., Dominiak, M., Gedrange, T. (2012). The survival and proliferation of fibroblasts on biocomposites containing genetically modified flax fibers: An in vitro study. Annals of Anatomy – Anatomischer Anzeiger, 194 (6), 513–517. doi:10.1016/j.aanat.2011.12.006
  18. Semak, B. B. (2011). Teoretyko-metodolohichni osnovy formuvannia vitchyznianoho syrovynnoho rynku ekolohichno bezpechnykh tovariv tekstylnoi promyslovosti. Kherson: Hrin D. S., 232.
  19. Semak, B. B. (2007). Naukovi zasady formuvannia rynku roslynnoi tekhnichnoi syrovyny ta yoho okremykh sehmentiv. Lviv: Lviv Commercial Academy, 512.
  20. Tikhosova, H. A., Holovenko, T. M., Mieniailo, I. O. (2011). Oderzhannia volokon riznoho funktsionalnoho pryznachennia z tresty lonu oliinoho. Lehka promyslovist, 1, 40–42.
  21. Fedosova, N. M. (2010). Rasshirenie vozmozhnostei ispol'zovaniia maslichnogo l'na. Problemy legkoi i tekstil'noi promyshlennosti Ukrainy, 1, 115–116.
  22. GOST 17.4.02-83. Ohrana prirody. Pochvy. Klassifikatsiia himicheskih veshchestv dlia kontrolia zagriazneniia. (1985). Introduced: 1985-01-01. Moscow: Izdatel'stvo standartov, 12.
  23. Standart 100 by OEKO-TEX. OEKO-TEX® Certifications&Services. Available: https://www.oeko-tex.com/ru/business/certifications_and_services/ots_100/ots_100_start.xhtml
  24. DSanPiN 3.3-182-2012. Materialy ta vyroby tekstylni, shkiriani i khutrovi. Osnovni hihiienichni vymohy. (2012). Introduced: 2013-09-01. Kyiv: State Sanitary Norms and Regulations, 35.
  25. Pendias, H., Kabata-Pendias, A. (2001). Trace Elements in Soils and Plants, Third Edition. CRC Press, 403. doi:10.1201/9781420039900
  26. Alekseev, Yu. V. (1987). Tiazhelye metally v pochvah i rasteniiah. Leningrad: Agropromizdat, 142.
  27. Foy, C. D., Chaney, R. L., White, M. C. (1978). The Physiology of Metal Toxicity in Plants. Annual Review of Plant Physiology, 29 (1), 511–566. doi:10.1146/annurev.pp.29.060178.002455
  28. Mortvedt, J. J., Cox, F. R., Shuman, L. M.; In: Welch, R. M. (1991). Micronutrients in Agriculture. Soil Science Society of America, 760.

Published

2017-03-30

How to Cite

Entushenko, V., Zakora, O., & Evtushenko, A. (2017). Research of safety of flax fibers for products of medical and sanitary-hygienic appointment. Technology Audit and Production Reserves, 2(3(34), 4–7. https://doi.org/10.15587/2312-8372.2017.100025

Issue

Section

Chemical and Technological Systems: Original Research