The influence of antioxidant heat treatment on utilization of active oxygen forms during storage of cucumbers

Authors

  • Olesia Priss Tavria State Agrotechnological University, 18, B. Khmelnitsky ave., Melitopol, Ukraine, 72310, Ukraine https://orcid.org/0000-0002-6395-4202
  • Olena Danchenko Melitopol State Pedagogical University named after Bogdan Khmelnitsky, 20, Heroes of Ukraine str., Melitopol, Ukraine, 72312, Ukraine
  • Viktoria Yevlash Kharkiv State University of Food Technology and Trade, 333, Klochkovskaya str., Kharkiv, Ukraine, 61051, Ukraine https://orcid.org/0000-0001-7479-1288
  • Valentina Zhukova Tavria State Agrotechnological University, 18, B. Khmelnitsky ave., Melitopol, Ukraine, 72310, Ukraine https://orcid.org/0000-0002-1963-659X
  • Valentуna Verkholantseva Tavria State Agrotechnological University, 18, B. Khmelnitsky ave., Melitopol, Ukraine, 72310, Ukraine https://orcid.org/0000-0003-1961-2149
  • Dmytrо Stepanenko Melitopol State Pedagogical University named after Bohdan Khmelnytsky, 20, Hetmanska str., Melitopol, Ukraine, 72313, Ukraine https://orcid.org/0000-0002-6757-9382

DOI:

https://doi.org/10.15587/2312-8372.2017.108530

Keywords:

cucumber storage, heat treatment with antioxidants, malonic dialdehyde, superoxide dismutase, catalase, peroxidase

Abstract

The effect of heat treatment with antioxidants on the degree of chilling injury, the dynamics of malonic dialdehyde and enzymatic antioxidants in the storage of cucumbers is analyzed. It is shown that the combination of heat treatment and the antioxidant composition Chl+I+A makes it possible to avoid chilling injury until the end of storage.

Cucumbers with heat treatment with antioxidants for the entire storage time demonstrate deviations from the background value of malonic dialdehyde by no more than 13.5 %, which reflects the stable functioning of the antioxidant system. Heat treatment with biologically active substances can slow the rate of decrease in activity of superoxide dismutase, which contributes to its activity at 60 % of the initial value after 28 days of storage.

The use of this treatment induces catalase activity in cucumbers, which grows according to the degree of their cold tolerance. Heat treatment with antioxidants regulates the activity of peroxidase in cucumbers, which is evidence of the slowing down of aging processes.

Author Biographies

Olesia Priss, Tavria State Agrotechnological University, 18, B. Khmelnitsky ave., Melitopol, Ukraine, 72310

Doctor of Technical Sciences, Associate Professor

Department of Technology of Processing and Storage of Agricultural Products

Olena Danchenko, Melitopol State Pedagogical University named after Bogdan Khmelnitsky, 20, Heroes of Ukraine str., Melitopol, Ukraine, 72312

Doctor of Agricultural Sciences, Professor

Department of Technology of Processing and Storage of Agricultural Products

Viktoria Yevlash, Kharkiv State University of Food Technology and Trade, 333, Klochkovskaya str., Kharkiv, Ukraine, 61051

Doctor of Technical Sciences, Professor

Department of Chemistry, Microbiology and Nutritional Hygiene

Valentina Zhukova, Tavria State Agrotechnological University, 18, B. Khmelnitsky ave., Melitopol, Ukraine, 72310

PhD, Senior Lecturer

Department of Technology of Processing and Storage of Agricultural Products

Valentуna Verkholantseva, Tavria State Agrotechnological University, 18, B. Khmelnitsky ave., Melitopol, Ukraine, 72310

PhD, Senior Lecturer

Department of Processing and Food Production Equipment named after professor F. Yalpachik

Dmytrо Stepanenko, Melitopol State Pedagogical University named after Bohdan Khmelnytsky, 20, Hetmanska str., Melitopol, Ukraine, 72313

PhD, Associate Professor

Department of Ecology and Zoology

References

  1. Laamim, M., Lapsker, Z., Fallik, E., Ait-Oubahou, A., Lurie, S. (1998). Treatments to reduce chilling injury in harvested cucumbers. Advances in horticultural science, 12 (4), 175–178.
  2. Gill, S. S., Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48 (12), 909–930. doi:10.1016/j.plaphy.2010.08.016
  3. Sevillano, L., Sanchez-Ballesta, M. T., Romojaro, F., Flores, F. B. (2009). Physiological, hormonal and molecular mechanisms regulating chilling injury in horticultural species. Postharvest technologies applied to reduce its impact. Journal of the Science of Food and Agriculture, 89 (4), 555–573. doi:10.1002/jsfa.3468
  4. Priss, O. (2016). Effect of heat treatment with antioxidants on oxygen radical scavenging during storage of bell pepper fruits. Ukrainian Food Journal, 5 (1), 16–26.
  5. Priss, O. (2015). Chilling-injury reduction during the storage of tomato fruits by heat treatment with antioxidants. Eastern-European Journal of Enterprise Technologies, 1(6 (73)), 38–43. doi:10.15587/1729-4061.2015.37171
  6. Priss, O., Kalytka, V. (2015). Effect of heat treatment with antioxidants on oxygen radical scavenging during storage of zucchini squash. Eastern-European Journal of Enterprise Technologies, 6(10 (77)), 47–53. doi:10.15587/1729-4061.2015.56188
  7. Priss, O. Р., Kalitka, V. V. (2014). Reduction of losses during storage vegetables sensitive to low temperatures. Progressive engineering and technology of food production enterprises, catering business and trade, 1 (19), 209–221.
  8. Mahajan, P. V., Caleb, O. J., Singh, Z., Watkins, C. B., Geyer, M. (2014). Postharvest treatments of fresh produce. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372 (2017), 20130309–20130309. doi:10.1098/rsta.2013.0309
  9. DSTU 3247-95. Ohirky svizhi. Tekhnichni umovy. (1996). Introduced 1997-01-01. Kyiv: Derzhspozhyvstandart Ukrainy, 24.
  10. Valenzuela, J., Manzano, S., Palma, F., Carvajal, F., Garrido, D., Jamilena, M. (2017). Oxidative Stress Associated with Chilling Injury in Immature Fruit: Postharvest Technological and Biotechnological Solutions. International Journal of Molecular Sciences, 18 (7), 1467. doi:10.3390/ijms18071467
  11. Karuppanapandian, T., Moon, J. C., Kim, C., Manoharan, K., Kim, W. (2011). Reactive oxygen species in plants: Their generation, signal transduction, and scavenging mechanisms. Australian Journal of Crop Science, 5 (6), 709–725.
  12. Del Rio, D., Stewart, A. J., Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases, 15 (4), 316–328. doi:10.1016/j.numecd.2005.05.003
  13. Yang, Q., Zhang, Z., Rao, J., Wang, Y., Sun, Z., Ma, Q., Dong, X. (2013). Low-temperature conditioning induces chilling tolerance in «Hayward» kiwifruit by enhancing antioxidant enzyme activity and regulating en-dogenous hormones levels. Journal of the Science of Food and Agriculture, 93 (15), 3691–3699. doi:10.1002/jsfa.6195
  14. Gill, S. S., Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48 (12), 909–930. doi:10.1016/j.plaphy.2010.08.016
  15. Alscher, R. G. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 53 (372), 1331–1341. doi:10.1093/jexbot/53.372.1331
  16. Hodges, D. M., DeLong, J. M. (2007). The relationship between antioxidants and postharvest storage quality of fruits and vegetables. Stewart Postharvest Review, 3 (3), 1–9. doi:10.2212/spr.2007.3.12
  17. Wang, C. Y. (1994). Chilling Injury of Tropical Horticultural Commodities. HortScience, 29 (9), 986–988.
  18. Wang, C. Y., Qi, L. (1997). Modified atmosphere packaging alleviates chilling injury in cucumbers. Postharvest Biology and Technology, 10 (3), 195–200. doi:10.1016/s0925-5214(97)01405-1
  19. Wang, B., Zhu, S. (2017). Pre-storage cold acclimation maintained quality of cold-stored cucumber through differentially and orderly activating ROS scavengers. Postharvest Biology and Technology, 129, 1–8. doi:10.1016/j.postharvbio.2017.03.001
  20. Wang, C. Y. (1995). Effect of temperature preconditioning on catalase, peroxidase, and superoxide dismutase in chilled zucchini squash. Postharvest Biology and Technology, 5 (1-2), 67–76. doi:10.1016/0925-5214(94)00020-s
  21. Lurie, S., Pedreschi, R. (2014). Fundamental aspects of postharvest heat treatments. Horticulture Research, 1, 14030. doi:10.1038/hortres.2014.30
  22. Kasim, M. U., Kasim, R. (2011). Vapor heat treatment increase quality and prevent chilling injury of cucumbers (Cucumis melo L. cv. Silor). American-Eurasian Journal of Agricultural & Environmental Sciences, 11 (2), 269–274.
  23. Wang, C. Y. (1994). Combined treatment of heat shock and low temperature conditioning reduces chilling injury in zucchini squash. Postharvest Biology and Technology, 4 (1-2), 65–73. doi:10.1016/0925-5214(94)90008-6
  24. Artes, F., Garcia, F., Marquina, J., Cano, A., Fernandez-Trujillo, J. P. (1998). Physiological responses of tomato fruit to cyclic intermittent temperature regimes. Postharvest Biology and Technology, 14 (3), 283–296. doi:10.1016/s0925-5214(98)00055-6
  25. Kolupaev, Yu. Ye., Karpets, Yu. V. (2009). Reactive oxygen species at adaptation of plants to stress temperatures. Fyzyolohyya y byokhymyya kul'turnykh rastenyy, 41 (2), 95‒108.
  26. Lurie, S. (1998). Postharvest heat treatments. Postharvest Biology and Technology, 14 (3), 257–269. doi:10.1016/s0925-5214(98)00045-3
  27. Lukatkin, A. S., Brazaityte, A., Bobinas, C., Duchovskis, P. (2012). Chilling injury in chilling-sensitive plants: a review. Zemdirbyste (Agriculture), 99 (2), 111–124.
  28. Wang, C. Y. (2010). Alleviation of chilling injury in tropical and subtropical fruits. Acta Horticulturae, 864, 267–273. doi:10.17660/actahortic.2010.864.35
  29. Purvis, A. C. (2002). Diphenylamine reduces chilling injury of green bell pepper fruit. Postharvest Biology and Technology, 25 (1), 41–48. doi:10.1016/s0925-5214(01)00144-2
  30. Toivonen, P. M. A. (2009). Benefits of Combined Treatment Approaches to Maintaining Fruit and Vegetable Quality. Fresh Produce, 3 (1), 58–64.
  31. Priss, O. P., Prokudina, T. F., Zhukova, V. F. (12.05.2009). Substance for treating fruited vegetables prior to storage. Patent of Ukraine No. 41177; MPK A23V 7/00, A23L 3/34. Appl. No. u 200813962. Filed 04.12.2008. Bull. No. 9. Available: http://uapatents.com/2-41177-rechovina-dlya-obrobki-plodovikh-ovochiv-pered-zberigannyam.html
  32. Musiienko, M. M., Parshykova, T. V., Slavnyi, P. S. (2001). Spektrofotometrychni metody v praktytsi fiziolohii, biokhimii ta ekolohii roslyn. Kyiv: Fitosotsiotsentr, 200.
  33. Sirota, T. V. (20.01.2000). Sposob opredeleniia antioksidantnoi aktivnosti superoksiddismutazy i himicheskih soedinenii. Patent of the Russian Federation No. 2144674; MPK 7 G 01 N33/52, G 01 N33/68. Appl. No. 99103192/14. Filed 24.02.1999. Bull. No. 2. Available: http://ru-patent.info/21/40-44/2144674.html
  34. Hrytsaienko, Z. M., Hrytsaienko, A. O., Karpenko, V. P. (2003). Metody biolohichnykh ta ahrokhimichnykh doslidzhen roslyn i hruntiv. Kyiv: NIChLAVA, 320.
  35. Zemlianuhin, A. A. (1985). Malyi praktikum po biohimii. Voronezh: VGU, 128.
  36. McCollum, T. G., Doostdar, H., Mayer, R. T., McDonald, R. E. (1995). Immersion of cucumber fruit in heated water alters chilling-induced physiological changes. Postharvest Biology and Technology, 6 (1-2), 55–64. doi:10.1016/0925-5214(94)00045-t
  37. McCollum, T. G., McDonald, R. E. (1993). Tolerance of cucumber fruit to immersion in heated water and subsequent effects on chilling tolerance. Acta Horticulturae, 343, 233–237. doi:10.17660/actahortic.1993.343.54
  38. Qian, C.-L., Zhao, Y.-Y., Mi, H.-B., Chen, X.-H., Guo, L.-J., Mao, L.-C. (2012). Role of antioxidative system during the development and senescence of cucumber fruit. Biologia Plantarum, 56 (4), 793–797. doi:10.1007/s10535-012-0126-y
  39. Sala, J. M., Lafuente, M. T. (2000). Catalase enzyme activity is related to tolerance of mandarin fruits to chilling. Postharvest Biology and Technology, 20 (1), 81–89. doi:10.1016/s0925-5214(00)00115-0
  40. Kolupaev, Yu. Ye., Karpets, Yu. V., Obozniy, O. I. (2011). Plants antioxidative system: participation in cell signaling and adaptation to influence of stressors. The Bulletin of Kharkiv National Agrarian University. Series Biology, 1 (22), 6–34.
  41. Keren-Keiserman, A., Tanami, Z., Shoseyov, O., Ginzberg, I. (2004). Peroxidase activity associated with suberization processes of the muskmelon (Cucumis melo) rind. Physiologia Plantarum, 121 (1), 141–148. doi:10.1111/j.0031-9317.2004.00301.x
  42. Zhang, W., Jiang, B., Li, W., Song, H., Yu, Y., Chen, J. (2009). Polyamines enhance chilling tolerance of cucumber (Cucumis sativus L.) through modulating antioxidative system. Scientia Horticulturae, 122 (2), 200–208. doi:10.1016/j.scienta.2009.05.013
  43. Blee, K. A., Jupe, S. C., Richard, G., Zimmerlin, A., Davies, D. R., Bolwell, G. P. (2001). Molecular identification and expression of the peroxidase responsible for the oxidative burst in French bean (Phaseolus vulgaris L.) and related members of the gene family. Plant Molecular Biology, 47 (5), 607–620. doi:10.1023/a:1012307324782

Published

2017-07-25

How to Cite

Priss, O., Danchenko, O., Yevlash, V., Zhukova, V., Verkholantseva, V., & Stepanenko, D. (2017). The influence of antioxidant heat treatment on utilization of active oxygen forms during storage of cucumbers. Technology Audit and Production Reserves, 4(3(36), 35–41. https://doi.org/10.15587/2312-8372.2017.108530

Issue

Section

Food Production Technology: Original Research