Development of the computer model of three dimensional surfaces reconstruction system

Authors

DOI:

https://doi.org/10.15587/2312-8372.2017.111233

Keywords:

binary codification, three-dimensional surface reconstruction, computer vision, computer modeling, structured illumination

Abstract

The object of research is a system for scanning three-dimensional surfaces using the method of structured illumination. The method of structured illumination is considered one of the most reliable methods for relief reconstruction of objects. Therefore, using this method, it is necessary to build a computer model simulating the operation of both the software and the hardware (projector and camera) of the 3D surface reconstruction system.

During the research, modern 3D scanners are used. In many of them, a combined system for obtaining the coordinates of a 3D object using the triangulation method is applied. In addition to the laser emitters or DLP projector, a digital camera is used that provided coordinate and texture information about the object. To test the adequacy of the computer model based on the above principles, the scenario for reconstruction of the ball surface is used.

A full-fledged simulation model for structured illumination (binary codification method) within the virtual system «projector-camera» is realized. In the system, there is a functional of the rotary table for fixing the relief over the entire outer area of the object (from all angles).

According to the research results of the resulting cloud of points, it can be concluded that the maximum error in the distance of the obtained point of the ball surface from its virtual center is 10 % of the length of the radius, and an average error of 4.5 %.

The developed computer model of the reconstruction system of three-dimensional surfaces allows to emulate the whole cycle of operation of a physical 3D scanner, with the possibility of implementing any type of structured illumination, without constructing a real physical model.

Author Biographies

Yuliia Lymarenko, Zaporizhzhya State Engineering Academy, 226, Soborny аve., Zaporizhzhya, Ukraine, 69006

PhD, Associate Professor

Department of Computerized System Software

Dmitry Tatievskyi, Zaporizhzhya State Engineering Academy, 226, Soborny аve., Zaporizhzhya, Ukraine, 69006

Postgraduate Student

Department of Computerized System Software

References

  1. Krasilnikov, N. N. (2011). Tsifrovaia obrabotka 2D- i 3D-izobrazhenii. Saint Petersburg: BHV-Peterburg, 608.
  2. Hartley, R., Zisserman, A. (2004). Multiple View Geometry in Computer Vision. Cambridge University Press, 656. doi:10.1017/cbo9780511811685
  3. Gorevoy, A. V., Koluchkin, V. Ya. (2012). Reconstruction Methods of Subject Three-Dimensional Structure for Multichannel System of Recording Using Structured Illumination. Engineering Journal: Science and Innovation, 12 (12). doi:10.18698/2308-6033-2012-12-507
  4. Salvi, J., Pages, J., Batlle, J. (2004). Pattern codification strategies in structured light systems. Pattern Recognition, 37 (4), 827–849. doi:10.1016/j.patcog.2003.10.002
  5. Scharstein, D., Szeliski, R. (2002). A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms. International Journal of Computer Vision, 47 (1/3), 7–42. doi:10.1023/a:1014573219977
  6. Geng, J. (2011). Structured-light 3D surface imaging: a tutorial. Advances in Optics and Photonics, 3 (2), 128–160. doi:10.1364/aop.3.000128
  7. Trobina, M. (September 21, 1995). Error Model of a Coded-Light Range Sensor. Technical Report BIWI-TR-164. Zurich: Communication Technology Laboratory Image Science Group, 1–35.
  8. Will, P. M., Pennington, K. S. (1971). Grid coding: A preprocessing technique for robot and machine vision. Artificial Intelligence, 2 (3–4), 319–329. doi:10.1016/0004-3702(71)90015-4
  9. Zhang, L., Curless, B., Seitz, S. M. (2002). Rapid shape acquisition using color structured light and multi-pass dynamic programming. Proceedings. First International Symposium on 3D Data Processing Visualization and Transmission. Padova, Italy, 1–13. doi:10.1109/tdpvt.2002.1024035
  10. Zhang, Z. (1999). Flexible camera calibration by viewing a plane from unknown orientations. Proceedings of the Seventh IEEE International Conference on Computer Vision. Kerkyra, Greece, 666–673. doi:10.1109/iccv.1999.791289
  11. Gorthi, S. S., Rastogi, P. (2010). Fringe projection techniques: Whither we are? Optics and Lasers in Engineering, 48 (2), 133–140. doi:10.1016/j.optlaseng.2009.09.001
  12. Yu, W. (2008). Development of a Three-Dimensional Anthropometry System for Human Body Composition Assessment. The University of Texas at Austin, 120.
  13. Vorotnikov, S. A. (2005). Informatsionnye ustroistva robototehnicheskih sistem. Moscow: MSTU n. a. N. E. Baumana, 384.
  14. Volodin, Yu. S., Orlov, A. V., Mihailov, B. B. (2005). Kalibrovka sistemy trehmernogo zreniia so strukturnoi podsvetkoi pri pomoshchi ploskih obiektov. Ekstremalnaia robototehnika, 5, 314–322.
  15. Oppenheim, A. V., Schafer, R. W. (1975). Digital Signal Processing. Pearson, 585.
  16. Moshkin, V. I., Petrov, A. A., Titov, V. S., Yakushenkov, Yu. G. (1990). Tehnicheskoe zrenie robotov. Moscow: Mashinostroenie, 272.
  17. Fursa, M. V. (2008). Reconstructing complex 3D objects by a Structured illumination methods. Optoelectronics, Instrumentation and Data Processing, 44 (1), 88–94. doi:10.3103/s8756699008010135
  18. Hafizov, D. G. (2004). Sintez i analiz algoritmov raspoznavaniia izobrazhenii prostranstvennyh gruppovyh tochechnyh obiektov. Yoshkar-Ola: MarSTU, 151.
  19. Garcia, R. R., Zakhor, A. (2011). Projector domain phase unwrapping in a structured light system with stereo cameras. 2011 3DTV Conference: The True Vision – Capture, Transmission and Display of 3D Video (3DTV-CON). IEEE, 1–4. doi:10.1109/3dtv.2011.5877215
  20. Weise, T., Leibe, B., Van Gool, L. (2007). Fast 3D Scanning with Automatic Motion Compensation. 2007 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 18–23. doi:10.1109/cvpr.2007.383291

Published

2017-09-21

How to Cite

Lymarenko, Y., & Tatievskyi, D. (2017). Development of the computer model of three dimensional surfaces reconstruction system. Technology Audit and Production Reserves, 5(2(37), 11–16. https://doi.org/10.15587/2312-8372.2017.111233

Issue

Section

Information Technologies: Original Research